CONTROLE QUIMICO DA FERRUGEM ASIATICA DA SOJA EM CULTIVARES RESISTENTE E SUSCETIVEL A Phakopsora pachyrhizi Syd. & P. Syd

ANDERSON DOS SANTOS DIAS

DOURADOS
MATO GROSSO DO SUL
2018
CONTROLE QUIMICO DA FERRUGEM ASIATICA DA SOJA EM CULTIVARES RESISTENTE E SUSCETIVEL A Phakopsora pachyrhizi Syd. & P. Syd

ANDERSON DOS SANTOS DIAS

Orientadora: PROFª. DRª. LILIAN MARIA ARRUDA BACCHI

Trabalho de conclusão de curso apresentado à Universidade Federal da Grande Dourados, como parte das exigências do Curso de Agronomia, para obtenção do título de Engenheiro Agrônomo.

DOURADOS
MATO GROSSO DO SUL
2018
CONTROLE QUIMICO DA FERRUGEM ASIATICA DA SOJA EM CULTIVARES RESISTENTE E SUSCETIVEL A Phakopsora pachyrhizi Syd. & P. Syd

Por

Anderson dos Santos Dias

Trabalho de conclusão de curso apresentado como parte dos requisitos exigidos para obtenção do título de ENGENHEIRO AGRÔNomo

Aprovado em: 13 de julho de 2018

Profª. Drª. Lilian Maria A. Bacchi
Orientadora - UFGD/FCA

Profº. Ph.D. Walber Luiz Gavassoni
UFGD/FCA

Bruno Cezar Álvaro Pontim
UFGD/FCA
AGRADECIMENTOS

Agradeço aos meus pais, Aparecido Dias e Roseli Ramos dos Santos Dias, que me incentivaram todos os anos durante minha jornada acadêmica.

Aos meus amigos e colegas do Laboratório de Microbiologia Agrícola e Fitopatologia por todo apoio e auxílio prestado durante meus anos de aprendizado.

A todos meus colegas de classe que ao decorrer dos anos compartilhamos momentos que ficarão para história.

Agradecimento especial a minha orientadora, Profª. Drª. Lilian Maria A. Bacchi, por todo apoio prestado, demonstrando grande carisma e excelência em profissionalismo.

Ao Prof. Ph.D. Walber Luiz Gavassoni e ao Técnico de Laboratório Bruno Cezar Alvaro Pontim por toda assistência em atender as solicitações e gentileza ao auxiliar.

Ao meu irmão, Matheus dos Santos Dias, e cunhado, Mateus Gomes Daniel que contribuíram para a realização deste trabalho.

Em especial, agradeço principalmente a minha melhor amiga e namorada Talita Gomes Daniel, que durante todos esses anos esteve ao meu lado, dando forças em momentos difíceis, superando limitações e sobre tudo, tornando cada momento inesquecível.
SUMÁRIO

<table>
<thead>
<tr>
<th>Seção</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUMO</td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ix</td>
</tr>
<tr>
<td>1. INTRODUÇÃO</td>
<td>1</td>
</tr>
<tr>
<td>2. REVISÃO DE LITERATURA</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Histórico e distribuição da doença</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Danos e importância econômica</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Disseminação, sintomas e ciclo de vida</td>
<td>4</td>
</tr>
<tr>
<td>2.4 Medidas de controle</td>
<td>5</td>
</tr>
<tr>
<td>2.5 Soja Inox</td>
<td>7</td>
</tr>
<tr>
<td>3. MATERIAL E MÉTODOS</td>
<td>8</td>
</tr>
<tr>
<td>3.1 Ensaio no campo</td>
<td>8</td>
</tr>
<tr>
<td>3.1.1 Cultivares e semeadura</td>
<td>8</td>
</tr>
<tr>
<td>3.1.2 Delineamento experimental, instalação e condução do experimento</td>
<td>8</td>
</tr>
<tr>
<td>3.2 Ensaio em laboratório</td>
<td>12</td>
</tr>
<tr>
<td>3.2.1 Coleta de esporos e montagem do ensaio em laboratório</td>
<td>12</td>
</tr>
<tr>
<td>3.2.2 Delineamento experimental e tratamentos em laboratório</td>
<td>12</td>
</tr>
<tr>
<td>3.2.3 Avaliação do ensaio in vitro e análise estatística</td>
<td>12</td>
</tr>
<tr>
<td>4. RESULTADOS E DISCUSSÃO</td>
<td>13</td>
</tr>
<tr>
<td>4.1 Ferrugem asiática da soja</td>
<td>13</td>
</tr>
<tr>
<td>4.2 Antracnose</td>
<td>18</td>
</tr>
<tr>
<td>4.3 Germinação de esporos in vitro</td>
<td>23</td>
</tr>
<tr>
<td>5. CONCLUSÃO</td>
<td>25</td>
</tr>
<tr>
<td>6. REFERÊNCIAS BIBLIOGRÁFICAS</td>
<td>26</td>
</tr>
</tbody>
</table>
LISTA DE QUADROS

QUADRO 1. Formulações utilizadas e doses utilizadas. UFGD, Dourados-MS, 2017......9

QUADRO 3. Área abaixo da curva de progresso da doença para urédias e lesão, em plantas de soja, causada por *P. pachyrhizi* com diferentes tratamentos com fungicida para as cultivares TMG 7063 IPRO e BMX-POTENCIA na safra 2017/2018. UFGD, Dourados-MS, 2017...14

QUADRO 4. Número de vagens remanescentes por plantas de soja das cultivares TMG 7063 e BMX-POTENCIA em função da aplicação de diferentes fungicidas na safra de 2017/18. UFGD, Dourados-MS, 2017. ..17

QUADRO 5. Severidade (%) considerando a área foliar lesionada por antracnose da soja em diferentes tratamentos com fungicida para as cultivares TMG 7063 IPRO e BMX-POTENCIA na safra 2017/2018. UFGD, Dourados-MS, 2017...20

QUADRO 6. Severidade* considerando as partes das plantas de soja afetadas por antracnose em diferentes tratamentos com fungicida para as cultivares TMG 7063 IPRO e BMX-POTENCIA na safra 2017/2018. UFGD, Dourados-MS, 2017 ...21

QUADRO 7. Área abaixo da curva de progresso da doença (AACPD) para antracnose em folíolos de soja referente ao terço inferior e superior em diferentes tratamentos com fungicida para as cultivares TMG 7063 IPRO e BMX-POTENCIA na safra 2017/2018. UFGD, Dourados-MS, 2017...22

QUADRO 8. Área abaixo da curva de progresso da doença (AACPD) para antracnose em plantas inteiras de soja referente ao terço inferior e superior em diferentes tratamentos com fungicida para as cultivares TMG 7063 IPRO e BMX-POTENCIA na safra 2017/2018. UFGD, Dourados-MS, 2018. ...22

QUADRO 9. Germinação (%) de uredósporos de *Phakopsora pachyrhizi* após a exposição em diferentes formulações mistas UFGD, Dourados-MS, 2018.23
LISTA DE FIGURAS

FIGURA 1. Escala diagramática para antracnose do feijoeiro. (Fonte: adaptada de GODOY et al., (1997). ..10

FIGURA 2. Precipitação e temperatura média na região de Dourados/MS, na safra 2017/18 registradas pela Embrapa Agropecuária Oeste (Fonte: Embrapa Agropecuária Oeste, 2018)...16

CONTROLE QUIMICO DA FERRUGEM ASIATICA DA SOJA EM CULTIVARES RESISTENTE E SUSCETIVEL A Phakopsora pachyrhizi Syd. & P. Syd

RESUMO: Diversas doenças estão presentes na cultura da soja, dentre elas, a ferrugem asiática é considerada a principal e com grande potencial causador de danos a produção onde, em ataques severos, a doença pode causar desfolha precoce comprometendo a atividade fotossintética da planta e consequentemente, o enchimento de grãos. O presente trabalho teve como objetivo avaliar a eficácia de diferentes fungicidas em formulações mistas no controle de ferrugem asiática da soja e outras doenças na safra 2017/2018 em cultivares resistente e suscetível, bem como seu efeito na germinação de uredósporos de Phakopsora pachyrhizi. Desenvolvido na Universidade Federal da Grande Dourados, o presente trabalho constou de duas etapas. Na primeira, em campo, foram semeadas as cultivares BMX-Potência RR e TMG 7063 IPRO. As aplicações de fungicidas eram realizadas com pulverizador costal pressurizado com CO₂, acoplado em uma barra dotada com quatro bicos de pulverização espaçado em 0,5 m. O delineamento experimental foi em blocos casualizados em arranjo fatorial 2x5, onde as aplicações fungicidas foram realizadas em estágio R4 e R6. O segundo ensaio foi realizado no Laboratório de Microbiologia Agrícola e Fitopatologia, onde 1 ml de uma suspensão de uredósporos de P. pachyrhizi contendo 6,43x10⁴ esporos, foram transferidos para placas de petri descartável em contato com calda de fungicidas, posteriormente foram incubadas em câmara de germinação tipo B.O.D a 24º C (± 1º) no escuro contínuo durante 15 horas. O delineamento experimental utilizado foi inteiramente casualizado, com cinco repetições. Não houve diferença significativa no controle de ferrugem asiática da soja utilizando diferentes formulações mistas nas duas cultivares de soja. A associação de mancozeb em formulações mistas reduziu significativamente o percentual de germinação de uredósporos de P. pachyrhizi.

Palavras-chave: soja inox; resistência genética; germinação esporo; fungicida; antracnose.
CHEMICAL CONTROL OF ASIAN SOYBEAM RUST IN RESISTANT AND SUSCEPTIBLE CULTIVARS Phakopsora pachyrhizi Syd. & P. Syd.

ABSTRACT: A number of diseases are present in the soybean crop, among them, Asian rust is considered the main and with great potential to cause damages to the production where, in severe attacks, the disease can cause early defoliation, compromising the photosynthetic activity of the plant and, consequently, the filling of grains. The objective of this work was to evaluate the efficacy of different fungicides in mixed formulations in the control of Asian soybean rust and others diseases in the 2017/2018 crop in resistant and susceptible cultivars, as well as its effect on the germination of Phakopsora pachyrhizi uredospores. Developed at the Federal University of Grande Dourados, this work consisted of two stages. In the first, in the field, the cultivars BMX-POTENCIA RR and TMG 7063 IPRO were sown. Fungicide applications were performed with CO2 pressurized costal sprayer, coupled to a bar provided with four spray nozzles spaced 0.5 m. The experimental design was a randomized complete block design in a 2x5 factorial arrangement, where the fungicide applications were performed in the R4 and R6 stages. The second assay was carried out at the Laboratory of Agricultural Microbiology and Phytopathology, where 1 ml of a suspension of P. pachyrhizi uredospores containing 6.43x10^4 spores were transferred to disposable petri dishes in contact with fungicide syrup, then incubated in a chamber of germination type BOD at 24º C (± 1º) in the continuous dark for 15 hours. The experimental design was completely randomized, with five replications. There was no significant difference in soybean rust control using different mixed formulations in the two soybean cultivars. The association of mancozeb in mixed formulations significantly reduced the percentage of germination of P. pachyrhizi uredospores.

Key-words: soybean inox; genetic resistance; spore germination; fungicide; anthracnose.
1. INTRODUÇÃO

A soja (*Glycine max* (L.) Merrill) é uma planta dicotiledônea que pertence à família Fabaceae. Seus grãos são fonte de energia, proteína, minerais (principalmente ferro) e vitaminas do complexo B, originando uma variedade de produtos e subprodutos utilizados pela indústria alimentícia, indústria química e agroindústria, tornando-a a oleaginosa de maior importância mundial (BENASSI e MANDARINO, 2008).

Na safra de 2017/18, a produção brasileira de grãos de soja foi de 111.558,6 mil toneladas, representando um decréscimo de 2,2% em relação à safra 2016/17. Esta produção derivou de um crescimento de 3,3% na área colhida (35.022,8 mil ha), sendo que a região centro-sul do Brasil se destacou sobre as demais com a produção de 86,8% de grãos colhidos no país. (CONAB, 2018).

Cultivada em praticamente todo o território nacional, diversos fatores podem afetar a produtividade da cultura (GARCÉS-FIALLOS e FORCELINI, 2013). Tais fatores podem ser de natureza biótica e abiótica, sendo que as doenças são consideradas um dos principais fatores que ocasionam tais perdas, variando sua intensidade de dano de acordo com as características intrínsecas de cada região produtora. As perdas anuais de produção por doenças são estimadas em 15 a 20%, podendo em alguns casos chegar até 100% (EMBRAPA, 2011). Dentre os principais fatores bióticos que limitam a exploração máxima do potencial produtivo da cultura, estão as doenças que podem ser causadas por fungos, bactérias, nematoides e vírus (SINCLAIR e HARTMAN, 2008). Mundialmente, são listadas mais de 100 doenças na cultura da soja, das quais aproximadamente 40 já foram identificadas no Brasil (YORINORI, 1997).

A incidência de doenças na cultura da soja vem aumentando a cada safra no Brasil. Fato decorrente do aumento de área cultivada no país, pois além de ser a cultura agrícola de maior importância na economia mundial, novas fronteiras agrícolas estão sendo abertas. Outro fator é o sistema de monocultura empregado em regiões, que possibilita a permanência do hospedeiro na lavoura e o patógeno se desenvolve originando a doença (BARROS, 2009).

Na cadeia produtora da soja a ferrugem-asiática da soja, causada pelo fungo *Phakopsora pachyrhizi* Syd. e P. Syd., é uma das doenças mais importante que incide na cultura da soja, com danos variando de 10% a 90% nas diversas regiões geográficas onde foi relatada (SINCLAIR e HARTMAN, 1999; YORINORI et al., 2005).
Nos últimos anos, o custo ferrugem no Brasil, considerando as perdas em produtividade e o custo para o controle da doença, tem sido estimado em U$ 2,2 bilhões até a safra de 2013/2014 (CONSÓRCIO ANTI-FERRUGEM, 2018).

As estratégias de manejo recomendadas no Brasil para o controle dessa doença incluem: a utilização de cultivares de ciclo precoce e semeaduras no início da época recomendada, a eliminação de plantas de soja voluntárias por meio do vazio sanitário, o monitoramento da doença nas lavouras desde o início do desenvolvimento da cultura, a utilização de fungicidas no aparecimento dos sintomas ou preventivamente, e a utilização de cultivares resistentes (EMBRAPA, 2013a)

O controle químico é o método mais indicado para essa enfermidade, no entanto, o sucesso dessa prática é condicionado à identificação precoce da doença e pulverizações em estádios adequados da cultura (ANDRADE e ANDRADE, 2002). Dessa forma, a decisão sobre o momento de aplicação (sintomas iniciais ou preventiva) deve ser técnica, levando em conta os fatores necessários ao aparecimento da ferrugem (presença do fungo na região, idade da planta e condição ambiental favorável), a logística de aplicação (disponibilidade de equipamentos e tamanho da propriedade), a presença de outras doenças e o custo de controle (EMBRAPA, 2013b)

Entretanto, a ocorrência da doença se dá inicialmente nas partes mais baixas da cultura e, dessa forma, as aplicações de fungicida precisam vencer a barreira imposta pela massa de folhas, com o objetivo de promover boa cobertura da planta (RAETANO, 2007).

Dada a importância do patógeno no sistema de cultivo da soja, o presente trabalho teve como objetivo avaliar a eficácia de diferentes fungicidas em formulações mistas no controle de ferrugem asiática da soja e outras doenças na safra 2017/2018 em cultivares resistente e suscetível, bem como seu efeito na germinação de uredósporos de *Phakopsora pachyrhizi*.
2. REVISÃO DE LITERATURA

2.1. Histórico e distribuição da doença

Seixas e Godoy (2007) relatam que, na safra posterior ao seu aparecimento, o fungo já estava presente na maioria dos estados brasileiros produtores de soja, sendo que na safra de seu aparecimento, a ferrugem causou perdas de aproximadamente 569,2 mil toneladas de soja ou cerca de U$$ 125,5 milhões (EMBRAPA, 2004). No país, o patógeno encontrou condições climáticas favoráveis além da presença do hospedeiro suscetível em extensas áreas, o que justifica a rápida disseminação a regiões produtoras de soja e a severidade da doença (JULIATTI et al., 2005).

2.2. Danos e importância econômica

Após a infecção e estabelecimento do patógeno na planta, esta tem seu processo fotossintético reduzido pela retirada de nutrientes promovida pelo fungo e pela destruição da área foliar (BEDENDO, 2011). Plantas severamente infectadas apresentam desfolha precoce, comprometendo a formação e o enchimento de vagens e o peso final do grão. Quanto mais cedo ocorrer a desfolha, menor será o tamanho do grão e, consequentemente, maior a perda de rendimento e de qualidade (YOUNG et al., 1991).
Segundo Milles et al. (2007), a rápida disseminação de *P. pachyrhizi* e seu potencial para reduzir a produção, faz de a ferrugem a doença foliar mais destrutiva da cultura da soja. Perdas significativas foram relatadas na Tailândia (10 a 40%), Índia (10 a 90%), China (10 a 50%), Taiwan (23 a 90%) e Japão (40%) (SINCLAIR e HARTMAN, 1999). No Brasil, já foram registradas perdas na ordem de 90% de produtividade (EMBRAPA, 2013). Na ausência de controle químico eficiente, a ferrugem pode causar prejuízos que variam entre 10 e 75% da produtividade esperada (NAVARINI et al., 2007).

2.3. Disseminação, sintomas e ciclo de vida

Phakopsora pachyrhizi é um patógeno obrigatório, não apresentando fase saprofítica, ou seja, não sobrevive em restos culturais ou na ausência de hospedeiros. Durante a entressafra, sua sobrevivência se dá através de plantas voluntárias ou em cultivos de soja irrigada (REIS et al., 2006).

A doença é favorecida por temperaturas ao redor de 18-26°C e períodos de molhamento foliar superiores a 15 horas (ALVES et al., 2007). Dessa forma, para que ocorra a germinação dos esporos do fungo, é necessário um molhamento da área foliar promovido pelo orvalho ou pela própria ação da chuva, sendo essa última de fundamental importância para o progresso da doença no campo (MELCHINGET et al., 1989; ALVES et al., 2006; DEL PONTE et al., 2006).

Com relação a disseminação, esta pode ocorrer de duas formas: longas ou curtas distâncias, sendo que os agentes disseminadores podem ser a água, vento, insetos entre outros. Após depositarem-se na superfície da folha, os esporos iniciam o processo de germinação e infecção dos tecidos vegetais (BEDENDO, 2011).

A colonização dos tecidos ocorre através do crescimento do micélio e da emissão de haustório intracelulares, acarretando posteriormente na formação de urédiias através de agregação de hifas (ZAMBENEDETTI, 2005). Como consequente colonização dos tecidos, os sintomas surgem em forma de manchas inicialmente puntiformes de coloração levemente amarelada, formando lesões angulares (REIS et al., 2006) podendo atingir 2 a 5mm de diâmetro, podendo aparecer em pecíolos, vagens e caules, entretanto são mais ocorrentes e abundantes nas folhas, principalmente na face abaxial (SINCLAIR e HARTMAN, 1999).
Ao atingir a etapa reprodutiva, as estruturas do patógeno força a epiderme foliar, rompendo e expondo a massa de uredósporos (BEDENDO, 2011), sendo este o único inoculo conhecido, produzido pelo fungo (BARNES et al., 2009).

2.4. Medidas de controle

Para reduzir o risco de danos à cultura, as estratégias de manejo recomendadas no Brasil para essa doença são: a semeadura no início da época recomendada; a eliminação de plantas de soja voluntárias e a ausência de cultivo de soja na entressafra; o monitoramento da lavoura desde o início do desenvolvimento da cultura e a utilização de fungicidas no aparecimento dos sintomas ou preventivamente (TECNOLOGIAS, 2006). O uso de cultivares de ciclo precoce também está nos métodos de controle pois, diminui o tempo de exposição da planta ao patógeno (REIS et al., 2006)

Outra tática de manejo é a eliminação de hospedeiros alternativos e soja tiguera, ressaltando a atenção em áreas irrigadas onde as condições são extremamente favoráveis ao desenvolvimento do patógeno (PIMENTA et al., 2011).

O arranjo populacional das plantas, mediante maior espaçamento entre linhas de cultivo, resulta em menor severidade da ferrugem e também permite melhor distribuição de fungicidas durante a aplicação, facilitando o manejo da doença (FERREIRA, 2009; RAMOS et al., 2009; ROESE et al., 2012).

Instituído pelo Ministério da Agricultura, Pecuária e Abastecimento – MAPA, o vazio sanitário da soja é uma ferramenta adicional de manejo da ferrugem asiática, objetivando reduzir a quantidade de uredósporos no ambiente no período de entressafra e, dessa forma, inibir o aparecimento precoce da doença, devido à fonte de inóculo inicialmente menor (SEIXAS e GODOY, 2007).

A pequena disponibilidade de cultivares resistente faz com que o manejo da cultura, por meio de épocas de semeadura e aplicação de fungicidas, seja as principais alternativas, devendo ser feito de forma racional para não inviabilizar a cultura e agredir o meio ambiente de forma indiscriminada (GODOY et al., 2007).

Os fungicidas são agentes de origem sintética ou natural que protegem as plantas contra a invasão de patógenos e/ou são utilizados para erradicar infecções já estabelecidas (SOUZA e DUTRA, 2003). A ferrugem asiática pode ser controlada por fungicidas do grupo dos inibidores da desmetilação (IDM) e inibidores da quinona
externa (IQE), sendo mais eficientes quando associados. Quanto ao momento de controle, sabe-se que é de difícil determinação, devido à dificuldade de detectar a doença no início da infecção. Por isso, a forma preventiva e com base em sistemas de monitoramento é a recomendada (SILVA e JULLIATTI, 2007).

Segundo Seixas et al. (2006) e Santos et al. (2007), a ferrugem asiática da soja tem seu controle baseado principalmente em fungicidas. Entretanto, de acordo com Raetano (2007), embora os fungicidas sejam bastante eficientes, o controle dessa doença nem sempre é satisfatório. Isso ocorre principalmente pelo fato da mesma iniciar nas partes mais baixas da cultura e, dessa forma, as aplicações de fungicida precisam vencer a barreira imposta pela massa de folhas e promover uma boa cobertura no interior da planta (ZHU et al., 2008).

Para o controle da ferrugem asiática da soja, no Ministério da Agricultura, Pecuária e Abastecimento estão registrados 48 produtos comerciais (AGROFIT, 2018) para o controle da ferrugem asiática da soja, sendo combinações ou uso isolado de inibidores da desmetilação (IDM) e inibidores da quinona externa (IQE) e inibidores da succinato-desidrogenase (SDHI).

Os IDM são fungicidas que agem inibindo a biossíntese de ergosterol pela inibição da demetilação do carbono na posição 14 (C14), são sistêmicos, absorvidos e translocados pela planta de forma acropetal. A depender da aplicação, podem atuar como protetores ou curativos. Apresentam elevada fungitoxicidade, rápida penetração e translocação nos tecidos vegetais (FORCELINI, 1994; EHR e KEMMITT, 2002).

Comumente chamados de estrobilurinas, os IQE foram biossintetizados a partir de um metabólito secundário produzido pelo fungo Strobilurus tenacellus. Os fungicidas pertencentes a este grupo agem inibindo a respiração mitocondrial, bloqueando a transferência de elétrons entre o citocromo b e o citocromo c1, no sítio QO, interferindo na produção de ATP. Tais fungicidas atuam preventivamente, inibindo a germinação de esporos, com alguma ação curativa e erradicante, inibindo também o desenvolvimento de fungos nos estágios iniciais de pós-germinação, com atividade antiesporulante (VENANCIO et al., 1999).

Os fungicidas inibidores da succinato-desidrogenase (SDHI) atuam na fosforilação da cadeia respiratória, inibindo o complexo II e interrompendo o transporte de elétrons atuando a a partir da fosforilação oxidativa (ENCINAS, 2004).
2. 5. Soja Inox

Desenvolvida pela empresa Tropical Melhoramento e Genética (TMG), a tecnologia INOX® presente em cultivares de soja permite à planta maiores condições de conviver com o patógeno causador da ferrugem asiática da soja. Cultivares que possuem essa tecnologia obtida graças a adição de genes de resistência permitem que a planta controle a severidade do ataque do patógeno, em resposta, as lesões emitidas na planta se apresentam de coloração marrom avermelhada, impedindo a esporulação e desenvolvimento do ciclo da ferrugem asiática (SOJA INOX, 2017). Por recomendação aos utilizadores da tecnologia, faz necessário, no mínimo, uma aplicação de fungicida, incorporando o uso da cultivar como uma das ferramentas de controle em um sistema integrado de manejo da doença (GODOY e ARIAS, 2003).

Em cultivares com algum grau de resistência, P. pachyrizi, ao colonizar a planta, gera morte do tecido, caracterizando uma reação de hipersensibilidade da planta ao fungo e as lesões. Como o patógeno necessita de células vivas para sobreviver e se multiplicar, com a morte dessas células, o crescimento do patógeno é limitado no local de infecção (ZAMBENEDETTI et al., 2007). Nesse caso, as lesões são de coloração marrom-avermelhada denominada lesões RB (reddish-brow) (CALVO et al., 2007). Além da cor, esse tipo de lesão tem como característica não formar ou formar poucas urédias sobre o tecido doente, sendo essas quase sem esporos (COSTAMILAN et al., 2006). Em lesões de suscetibilidade, geralmente estas se apresentam na coloração castanha onde tem a produção de um número elevado de pústulas produzindo uredósporos (APS, 2004).

3. MATERIAL E MÉTODOS

3.1 Ensaio no campo

Os experimentos foram desenvolvidos na Fazenda Experimental da Faculdade de Ciências Agrárias (FAECA) da Universidade Federal da Grande Dourados (UFGD), no município de Dourados – MS, sobre a latitude 22º 14’ S e Longitude 54º 49’ W e 452 m de altitude e no Laboratório de Microbiologia Agrícola e Fitopatologia da Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, localizado na Rodovia Dourados/Itahum - Km 12, Dourados – MS.

3.1.1. Cultivares e semeadura

A semeadura foi realizada em 24 de novembro de 2017, utilizando as cultivares BMX-Potência RR e TMG 7063 IPRO, constando 16 sementes m\(^{-1}\) com espaçamento entre linhas de 0,45m. A Adubação foi realizada no momento da semeadura com 300 kg ha\(^{-1}\) da formulação 04-20-20 (N, P\(_2\)O\(_5\) e K\(_2\)O). O tratamento de sementes foi realizado com fungicida carbedazim + tiram (0,2 L/100 kg de sementes) visando a proteção das sementes. No momento da semeadura, foi realizado a inoculação a base de turfa, contendo as bactérias *Bradyrhizobium elkani* e *Bradyrhizobium japonicum*.

3.1.2. Delineamento experimental, instalação e condução do experimento

O delineamento experimental utilizado foi em blocos casualizado com parcelas subdivididas em arranjo fatorial 2x5(2 cultivares x 5 tratamentos), constando de oito blocos. As subparcelas foram constituídas de 3,15 m de largura, com sete linhas de semeadura com espaçamento de 0,45 m, por 5,0 m de comprimento. Totalizando uma área total de 15,75 m\(^2\) por parcela. Como área útil, foram consideradas as três linhas centrais, desprezando-se 0,5 m de bordadura de cada lado do comprimento, totalizando uma área útil de 5,4 m\(^2\) por parcela.

As aplicações se iniciariam em estágio R1, entretanto, devido as condições climáticas, as chuvas intensas que ocorreram nesse período impossibilitaram a realização. Dessa forma, as pulverizações foram realizadas em estágio R4 e R6.
Para a execução das aplicações foi utilizado um pulverizador costal pressurizado com CO₂, acoplado em uma barra dotada com quatro bicos de pulverização espaçados em 0,5 m. A pressão foi regulada para 350 KPa e o volume de calda foi ajustado para 200 L ha⁻¹.

3.1.3. Tratamentos

Os tratamentos consistiram na pulverização dos seguintes produtos listados no Quadro 1.

QUADRO 1. Formulações utilizadas e doses utilizadas. UFGD, Dourados-MS, 2017.

<table>
<thead>
<tr>
<th>Produto</th>
<th>Formulação</th>
<th>Dose do produto/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fox xPro®</td>
<td>Bixafen (125 g L⁻¹) + Protioconazol (175 g L⁻¹) + Trifloxistrobina (150 g L⁻¹)</td>
<td>0,5 L</td>
</tr>
<tr>
<td>Fox xPro® + Unizeb Gold®</td>
<td>Bixafen (125 g L⁻¹) + Protioconazol (175 g L⁻¹) + Trifloxistrobina (150 g L⁻¹) + Mancozeb (750 g Kg⁻¹)</td>
<td>0,5 L + 2,5 kg</td>
</tr>
<tr>
<td>Aproach Prima®</td>
<td>Picoxistrobina (200 g L⁻¹) + Ciproconazole (80 g L⁻¹)</td>
<td>0,3 L</td>
</tr>
<tr>
<td>Aproach Prima® + Unizeb Gold®</td>
<td>Picoxistrobina (200 g L⁻¹) + Ciproconazole (80 g L⁻¹) + Mancozeb (750 g Kg⁻¹)</td>
<td>0,3 L + 2,0 kg</td>
</tr>
<tr>
<td>Testemunha</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

3.1.4. Monitoramento, avaliações a campo e análise estatística

O monitoramento da doença se deu através de coletas de 75 folíolos distribuídos nas bordas do experimento para averiguar a presença da doença no ensaio. A partir da detecção da doença, que se fez presente somente no estágio R4, iniciaram-se as aplicações com posteriores coletas semanais de 10 folíolos por parcela, retirados do terço inferior das plantas que estavam presentes na área útil, totalizando 800 folíolos coletados por semana em um total de quatro coletas. Após a coleta, os folíolos foram acondicionados em sacos plásticos transparentes, previamente identificados e levados ao Laboratório de Microbiologia Agrícola e Fitopatologia, onde foram examinados em
microscópio estereoscópio (80x) para contagem de lesões e urédias.

Em adição a avaliação da ferrugem asiática da soja, foi avaliada a severidade de antracnose. Dessa forma, estas avaliações foram realizadas no momento da coleta de folíolos, onde observaram-se os sintomas da doença em dez folíolos centrais do terço inferior, médio e superior da planta. Nas avaliações de severidade, utilizou-se a escala diagramática para antracnose do feijoeiro (Figura 01) a qual prevê notas de 0 a 24% de área foliar lesionada.

Ao mesmo tempo, foram realizadas avaliações da antracnose em plantas inteiras utilizando a escala proposta por CIAT (1987) para o feijoeiro cujas notas variam de 1 a 9 (Quadro 02).

Em etapa final, a cultura já se encontrava na maturação fisiológica para realização da colheita, porém com a incidência e grandes intensidades de chuva foi observado um alto abortamento de vagens, sendo que as restantes se encontravam pouco granadas e impróprias para a colheita em função de deterioração microbiana. Dessa forma, realizou-se a contagem do número de vagens remanescentes em cinco plantas de soja distribuídas na área útil da parcela.

O dados obtidos de número de urédias e número de lesões, área foliar lesionada e severidade de antracnose em plantas de soja foram utilizados para calcular a área abaixo da curva de progresso da doença (AACPD) utilizando a metodologia proposta por Campbel e Madden (1990), baseado na fórmula: AACPD = Σ (yi + yi+1)/2 * (ti+1 – ti) onde: n= número de avaliações; y= severidade da doença e t = tempo. Para os dados de número de vagens por planta, as médias foram transformados em √x + 1. Os dados
obtidos em porcentagens foram convertidos para arco seno \(\sqrt{x}/100 \). Submetidos a análise de variância pelo teste LSD a 5% de probabilidade.

<table>
<thead>
<tr>
<th>Escala</th>
<th>Partes da planta afetada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sem sintomas visíveis da doença</td>
</tr>
<tr>
<td>3</td>
<td>Presença de muito poucas e pequenas lesões, principalmente na nervura primaria do lado inferior da folha ou no peciolo, cobrindo aproximadamente 1% da área da superfície.</td>
</tr>
<tr>
<td>5</td>
<td>Presença de várias pequenas lesões no pecíolo ou na nervura primaria e secundárias do lado inferior da folha. Nas vagens, pequenas (menos de 2 mm de diâmetro) lesões redondas, com ou sem esporulação reduzida, afetando aproximadamente 5% do áreas de superfície da vagem.</td>
</tr>
<tr>
<td>7</td>
<td>Presença de numerosas lesões na parte inferior da folha. Lesões necróticas também podem ser observadas na folha superior superfície e em pecíolos. Nas vagens, a presença de lesões de tamanho médio (maior que 2 mm de diâmetro) sendo mais evidentes, mas também algumas lesões pequenas e maiores geralmente com esporulação e que cobrem aproximadamente 10% da área da superfície da vagem.</td>
</tr>
<tr>
<td>9</td>
<td>Necrose severa em 25% ou mais do tecido vegetal sendo evidente, resultando em lesões nas folhas, pecíolos, caule, ramos, e até mesmo no ponto de crescimento que muitas vezes resulta em morte de os tecidos vegetais. A presença de numerosos, grandes cancros esporulados e afundantes podem resultar em má formação do número de sementes e morte da vagem.</td>
</tr>
</tbody>
</table>
3. 2. Ensaios em laboratório

3. 2.1. Coleta de esporos e montagem do ensaio em laboratório

Uredósporos foram coletados de plantas de soja naturalmente infestadas presentes em casa de vegetação através de um processo de agitação manual das folhas e varredura do limbo foliar com pincel de pelo sintético.

Os esporos coletados foram suspensos em água destilada contendo uma gota do agente dispersante de Tween 20. Para o ensaio foi utilizado 1 mL de uma suspensão de esporos contendo 6,43 x 10^4 uredósporos de *P. pachyrhizi* que foram transferidos para placas de Petri descartáveis contendo uma camada de ágar-água. Posteriormente, adicionou-se uma alíquota de 1 mL de calda de fungicida correspondente ao tratamento. Cada placa de petri foi considerada uma unidade experimental.

As placas foram incubadas por 15 horas em câmara de germinação tipo B.O.D a 24º C (± 1º) no escuro contínuo. Decorrido o tempo, as placas foram removidas da incubadora para avaliação em microscópio.

3. 2.2. Delineamento experimental e tratamentos em laboratório

O delineamento experimental utilizado foi inteiramente casualizado, com cinco repetições, sendo que cada placa de petri descartável era considerada uma unidade experimental. Os tratamentos utilizados foram baseados nos mesmos usados nas aplicações a campo, cujo sua relação encontra-se no Quadro 01.

3. 2.3. Avaliação do ensaio in vitro e análise estatística

Com relação aos parâmetros avaliados, foi quantificada a porcentagem de germinação. Uredósporos foram considerados germinados quando o comprimento do tubo germinativo era superior ao diâmetro do esporo.

Em cada placa foram observados 50 esporos, aleatórios, em microscópio optico sob aumento de 200 vezes. Os dados obtidos de porcentagem de germinação foram transformados em arco seno de √x + 1 e submetidos a análise estatística com o auxílio do programa SISVAR, onde as medias foram comparadas pelo teste de Tukey a 5% de probabilidade.
4. RESULTADOS E DISCUSSÃO

4.1. Ferrugem asiática da soja

Os primeiros sintomas da ferrugem asiática da soja foram observados aos 50 dias após a emergência, na data 12 de janeiro de 2018, em estágio R4 (vagens formadas com 2-4 cm de comprimento). Dessa forma, a análise dos dados referente à área abaixo da curva de progresso da doença (AACPD), tanto para urédias quanto para lesão (Quadro 03) revelou que não houve efeito significativo dos tratamentos analisados. Provavelmente, as aplicações de fungicidas juntamente com a pequena taxa de infecção em condições climáticas variáveis não foi suficiente para influenciar no desenvolvimento da doença no campo.

Godoy e Henning (2008), avaliando o efeito da aplicação de fungicidas no controle da ferrugem da soja, verificaram que apenas uma aplicação de trifloxistrobina + tebuconazol não foi suficiente para controlar a doença, em função do pequeno residual da formulação, refletindo em um maior valor de AACPD.

Lourenço et al. (2014), avaliando o efeito da aplicação de fungicidas baseado na detecção de uredósporos de Phakopsora pachyrhizi, observaram que aplicações tardias de piraclostrobina + epoxiconazole não foram eficientes na redução dos valores da AACPD.

Resultados similares à AACPD deste estudo foi obtido por Duarte et al. (2009) onde aplicações de fungicidas não resultaram em resposta significativa para os diferentes tratamentos testados. Da mesma forma, Godoy et al. (2009) avaliando o momento de aplicação em duas safras, observaram que uma única aplicação de azoxistrobina+ciproconazole em diferentes estágios reprodutivos não foi suficiente para reduzir a proporção de doenças no ensaio, apresentando alto valor de AACPD, não havendo diferença significativa entre a testemunha.

Resultados contraditórios ao trabalho foi obtido por Nascimento et al. (2012) testando a associação de adjuvantes no controle de ferrugem asiática da soja, onde a aplicação de picoxitrobina + ciproconazole associado a diferentes adjuvantes foi eficiente na redução da AACPD tanto para urédias quanto para lesões, diferindo significativamente da testemunha. O mesmo resultado foi obtido por Palhares et al. (2017) testando a eficácia de trifloxistrobina + bixafen + protioconazole onde este apresentou maior índice de controle sobre a testemunha chegando a atingir 92%.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>AACPD Urédias</th>
<th>Média cultivares</th>
<th>AACPD Lesão</th>
<th>Média cultivares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TMG 7063</td>
<td></td>
<td>TMG 7063</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMX-POTENCIA</td>
<td>Média cultivares</td>
<td>BMX-POTENCIA</td>
<td>Média cultivares</td>
</tr>
<tr>
<td>Fox xPro®</td>
<td>2828,88</td>
<td>3259,38 A</td>
<td>1200,50</td>
<td>1321,03 A</td>
</tr>
<tr>
<td>Fox xPro® + Unizeb Gold®</td>
<td>3238,38</td>
<td>2847,91 A</td>
<td>1201,38</td>
<td>1156,095 A</td>
</tr>
<tr>
<td>Aproach Prima®</td>
<td>3335,94</td>
<td>3460,41 A</td>
<td>1428,88</td>
<td>1468,47 A</td>
</tr>
<tr>
<td>Aproach Prima® + Unizeb Gold®</td>
<td>2856,00</td>
<td>3178,44 A</td>
<td>1152,81</td>
<td>1354,06 A</td>
</tr>
<tr>
<td>Testemunha</td>
<td>4169,38</td>
<td>3770,38 A</td>
<td>1664,69</td>
<td>1507,41 A</td>
</tr>
</tbody>
</table>

Média Tratamentos: 3285,716 A, 3320,892 A, 1329,652 A, 1393,174 A

CV(%) | 36,04 | 30,82

Médias seguidas pela mesma letra minúscula na coluna, para tratamentos, e maiúscula na linha, para cultivares, não diferem entre si pelo teste LSD a 5% de probabilidade. Para fins de estatística, médias foram transformados em √x+1.

Torna-se importante salientar que apesar de no presente trabalho as características de resistência à doença obtida pela tecnologia INOX® presente na cultivar TMG 7063 não terem sido detectadas, quando comparadas com outra cultivar suscetível, não condizem com resultados descritos na literatura. Bridi (2017), estudando o efeito de diferentes programas de aplicação de fungicidas sobre cultivares de soja com e sem resistência genética, observou que a maior AACPD foi encontrada na cultivar BMX Tornado RR, onde três aplicações utilizando formulações mistas com triazóis + carboxamidas + estrobilurinas não foram eficientes no controle de ferrugem asiática no terço inferior das plantas. Porém ao utilizar uma cultivar com a tecnologia INOX® (TMG 7062 IPRO®) observou que independentemente do número de aplicações e dos tratamentos testados não houve diferença significativa, comprovando o efeito da resistência genética imposta pela cultivar. O mesmo autor relata a diferença de produtividade entre as duas cultivares, onde a cultivar resistente apresentou a maior produção, não havendo diferença significativa com relação ao efeito de diferentes tratamentos de fungicidas aplicados na cultivar resistente.

A resistência tem como característica a redução da taxa da epidemia, por meio da redução do número e tamanho das lesões, da diminuição da produção de esporos e do aumento do período latente (SILVA et al., 2007).

Resultado contrário a este trabalho foi obtido por Siqueri et al (2011) avaliando o controle de ferrugem asiática da soja nas cultivares TMG 803 INOX® e MSOY 8866 sob diferentes épocas e número de aplicações de azoxystrobin + ciproconazole observou que, na ausência de controle químico a cultivar TMG 803, em estágio final de ciclo, apresentou desfolha de 83% enquanto que a variedade suscetível apresentou 100%, evidenciando diferentes respostas quanto a severidade da doença. Já para os tratamentos, as menores porcentagens de desfolha foi obtida na variedade inox, onde 3 aplicações em diferentes estágios de desenvolvimento propiciou o maior controle da doença, apresentando 48% de desfolha. Enquanto que a cultivar suscetível, o mesmo número 3 de aplicações refletiu em 69% de desfolha. Em termos de produtividade, a cultivar TMG 803 apresentou as maiores produtividades quando comparada com a MSOY 8866, mesmo na ausência de controle químico.
Avaliando o efeito dos danos da ferrugem na soja em diferentes genótipos, Arakava (2014) observou que aplicações preventivas ou curativas não alterou significativamente os valores de AACPD na safra 2013/2015 para cultivares com tecnologia INOX™ tanto para lesões quanto para urédias, evidenciando ainda que, a taxa de progresso da doença comparado com a ausência de controle químico foi semelhante.

Dessa forma, torna-se visível que a tecnologia INOX® presente em algumas cultivares tem efeito comprovado, o comportamento da cultivar no presente experimento, aliado a alta variação das condições climáticas é considerado atípico (Figura 2), onde a ocorrência de grandes intensidades de precipitação nos meses de condução do ensaio a campo dificultou a visualização do controle em nas cultivares utilizadas (TMG 7063 e BMX-POTENCIA).

FIGURA 2. Precipitação e temperatura média na região de Dourados/MS, na safra 2017/18 registradas pela Embrapa Agropecuária Oeste (Fonte: Embrapa Agropecuária Oeste, 2018).

Com relação ao número de vagens por plantas, não houve diferença significativa entre os tratamentos testados (Quadro 04). Possivelmente, o alto índice de abortamento de vagens observado na condução do experimento afetou a sua quantidade final. Quando ainda presentes, a qualidade do material apresentava-se impropria para colheita e determinação de dados de produtividade.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>TMG 7063</th>
<th>BMX-POTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fox xPro®</td>
<td>22,30 aA</td>
<td>23,17 aA</td>
</tr>
<tr>
<td>Fox xPro® + Unizeb Gold®</td>
<td>23,95 aA</td>
<td>20,95 aA</td>
</tr>
<tr>
<td>Aproach Prima®</td>
<td>19,43 aA</td>
<td>21,50 aA</td>
</tr>
<tr>
<td>Aproach Prima® + Unizeb Gold®</td>
<td>22,25 aA</td>
<td>26,92 aA</td>
</tr>
<tr>
<td>Testemunha</td>
<td>19,98 aA</td>
<td>24,97 aA</td>
</tr>
<tr>
<td>CV(%)</td>
<td>19,26</td>
<td></td>
</tr>
</tbody>
</table>

Médias seguidas pela mesma letra minúscula na coluna, para tratamentos, e maiúscula na linha, para cultivares, não diferem entre si pelo teste LSD a 5% de probabilidade. Para fins de estatística, médias foram transformados em √x+1.

Possivelmente, o alto índice de abortamento de vagens observado na condução do experimento afetou a sua quantidade final. Quando ainda presentes, a qualidade do material apresentava-se impropria para colheita e determinação de dados de produtividade.

O efeito da alta precipitação durante a condução do experimento ocasionou estresse às raízes das plantas, em função da alta umidade do solo, desencadeando a síntese do etileno na planta, o qual é transportado para a parte aérea da planta, via xilema, onde tal acúmulo ocasiona a queda acelerada e acentuada de órgãos distais.

Resultado similar foi observado por Barros et al. (2008) onde a aplicação de carbendazim, na cultivar CONQUISTA, em diferentes estágios fenológicos da soja não reduziu o abortamento de vagens, não apresentando diferença significativa entre a testemunha.

Cabe relatar ainda que durante a condução do experimento a presença de sintomas conhecido como “folha carijó”, foi observado durante o tempo de execução em parcelas que receberam aplicações de bixafen + protioconazol + trifloxistrobina, mesmo quando houve associação com mancozeb os sintomas de fitotoxidez eram nítidos, como demonstra a Figura 2. Entretanto, como relatado sobre dificuldade na colheita do material, seus efeitos na produtividade não puderam ser mensurados.

4. 2. Antracnose

Ao mesmo tempo que as avaliações para a ferrugem asiática da soja eram realizadas, procedeu-se a avaliação da antracnose, objetivando averiguar uma possível interação entre as cultivares utilizadas e as formulações aplicadas. Sendo assim, observa-se que na primeira avaliação de área foliar lesionada, realizada em estágio R5.1 (início da granação), houve diferença significativa entre a aplicação de Fox xPro® e a testemunha, na cultivar BMX-POTENCIA (Quadro 5). Na segunda avaliação, realizada em estágio R5.5 (maioria das vagens entre 75 a 100% da granação) todos os tratamentos diferiram da testemunha para a cultivar BMX-POTENCIA, já na cultivar TMG, apenas a aplicação de Fox xPro® resultou em diferença significativa da testemunha. Para a cultivar BMX-POTENCIA, a aplicação do produto comercial Fox xPro® resultou em menor severidade nas duas avaliações, porém, na segunda não diferiu dos demais tratamentos com fungicida, sendo que todos apresentaram redução na severidade da doença. Assim quando houve a aplicação do mesmo produto associado ao mancozeb (Fox xPro® + Unizeb Gold®) os níveis de severidade se igualaram.

A cultivar TMG 7063 apresentou menor resistência ao patógeno quando comparado com o comportamento da BMX-POTENCIA.
Na terceira avaliação, realizada em estágios finais R7 (início do amarelecimento de folhas e vagens), observa-se que não houve efeito significativo tanto para tratamentos quanto para cultivares.

Quanto a severidade da antracnose em plantas inteiras de soja (Quadro 6), houve diferença significativa, na primeira e segunda avaliação, onde a aplicação de Fox xPro®, Fox xPro® + Unizeb Gold® e Aproach Prima® + Unizeb Gold® na cultivar BMX-POTENCIA, reduziram a severidade da doença na primeira avaliação. Na segunda avaliação, apenas os efeitos de Fox xPro®, Fox xPro® + Unizeb Gold® se confirmaram. O mesmo efeito não foi observado na cultivar TMG 7063.

As avaliações de área foliar lesionada serviram de base para o cálculo da área abaixo da curva de progresso da doença (AACPD), onde foi possível identificar diferença entre as cultivares sob a aplicação de Fox xPro® (Quadro 7). Como já relatado, houve resposta diferente entre o comportamento das cultivares perante a aplicação de Fox xPro®, porém a quantidade de doença foi reduzida quando se acrescentou o mancozeb em associação. Entretanto, não houve diferença com a testemunha, mostrando apenas o efeito da inclusão do mancozeb na formulação mista.

Já para a área abaixo da curva de progresso da doença (AACPD) referente às plantas inteiras (Quadro 08), para a cultivar TMG 7063 não houve diferença significativa dos tratamentos testados, entretanto, na cultivar BMX-Potencia a aplicação das formulações comerciais e misturas Fox xPro® e Fox xPro® + Unizeb Gold® evidenciou diferença significativa em relação a testemunha, evidenciando um maior efeito desse produto para o controle de antracnose em diversos órgãos da planta, além da maior eficácia dos princípios ativo que possuem modo de ação distintos. Ainda, houve interação significativa entre as cultivares, onde a associação com mancozeb em formulações mistas evidenciou uma menor AACPD para a cultivar BMX- POTENCIA.
QUADRO 5. Severidade (%) considerando a área foliar lesionada por antracnose da soja em diferentes tratamentos com fungicida para as cultivares TMG 7063 IPRO e BMX-POTENCIA na safra 2017/2018. UFGD, Dourados-MS, 2017

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>R5.1</th>
<th>R5.5</th>
<th>R7</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMG 7063 BMX-POTENCIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fox xPro®</td>
<td>1,012 cB</td>
<td>2,363 bB</td>
<td>1,513 abA</td>
</tr>
<tr>
<td>Fox xPro® + Unizeb Gold®</td>
<td>0,775 bcA</td>
<td>0,675 aB</td>
<td>1,275 aA</td>
</tr>
<tr>
<td>Aproach Prima®</td>
<td>0,300 aA</td>
<td>0,775 aB</td>
<td>3,500 bA</td>
</tr>
<tr>
<td>Aproach Prima® + Unizeb Gold®</td>
<td>0,463 abcA</td>
<td>0,875 aB</td>
<td>1,963 abA</td>
</tr>
<tr>
<td>Testemunha</td>
<td>0,350 abcA</td>
<td>1,025 aB</td>
<td>2,325 abA</td>
</tr>
<tr>
<td>CV(%)</td>
<td>46,24</td>
<td>43,71</td>
<td>42,07</td>
</tr>
</tbody>
</table>

Médias seguidas pela mesma letra minúscula na coluna, para tratamentos, e maiúscula na linha, para cultivares, não diferem entre si pelo teste de LSD a 5% de probabilidade. Para fins de estatística, médias de porcentagem foram transformados em arco seno de $\sqrt{\frac{x}{100}}$.

*Severidade avaliada considerando a área foliar lesionada com sinais do patógeno, de acordo com escala diagramática proposta por Godoy et al. (1997)

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>R5.1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TMG 7063</td>
<td>BMX-POTENCIA</td>
<td></td>
</tr>
<tr>
<td>Fox xPro®</td>
<td>4,25</td>
<td>aA</td>
<td>3,00</td>
</tr>
<tr>
<td>Fox xPro® + Unizeb Gold®</td>
<td>4,00</td>
<td>aA</td>
<td>3,00</td>
</tr>
<tr>
<td>Aproach Prima®</td>
<td>3,75</td>
<td>aA</td>
<td>3,50</td>
</tr>
<tr>
<td>Aproach Prima® + Unizeb Gold®</td>
<td>4,50</td>
<td>aA</td>
<td>3,00</td>
</tr>
<tr>
<td>Testemunha</td>
<td>4,75</td>
<td>aA</td>
<td>4,50</td>
</tr>
<tr>
<td>CV(%)</td>
<td>36,46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	R5.5			
	TMG 7063	BMX-POTENCIA		
Fox xPro®	5,00	aA	3,75	aA
Fox xPro® + Unizeb Gold®	5,25	aA	4,00	aA
Aproach Prima®	5,25	aA	5,00	abA
Aproach Prima® + Unizeb Gold®	6,00	aA	4,25	abB
Testemunha	5,75	aA	5,50	bA
CV(%)	28,47			

	R7			
	TMG 7063	BMX-POTENCIA		
Fox xPro®	4,00	aA	4,75	aA
Fox xPro® + Unizeb Gold®	4,63	abA	4,00	aA
Aproach Prima®	4,88	abA	4,00	aA
Aproach Prima® + Unizeb Gold®	5,50	bA	5,00	aA
Testemunha	4,50	abA	4,75	aA
CV(%)	32,19			

Médias seguidas pela mesma letra minúscula na coluna, para tratamentos, e maiúscula na linha, para cultivares, não diferem entre si pelo teste de LSD a 5% de probabilidade.

*Escala diagramática adaptada de CIAT (1987).

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>AACPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TMG 7063</td>
</tr>
<tr>
<td>Fox xPro®</td>
<td>25,38</td>
</tr>
<tr>
<td>Fox xPro® + Unizeb Gold®</td>
<td>11,90 aA</td>
</tr>
<tr>
<td>Aproach Prima®</td>
<td>18,73 abA</td>
</tr>
<tr>
<td>Aproach Prima® + Unizeb Gold®</td>
<td>14,61 bA</td>
</tr>
<tr>
<td>Testemunha</td>
<td>16,54 abA</td>
</tr>
</tbody>
</table>

CV(%) 64,09

Médias seguidas pela mesma letra minúscula na coluna, para tratamento, e maiúscula na linha, para local, não diferem entre si pelo teste de LSD a 5% de probabilidade. Para fins de estatística, médias foram transformados em $\sqrt{x} + 1$.

Avaliando o efeito de diferentes formulações de fungicidas no controle de antracnose na safra 2011/2012 em três ensaios realizados nos municípios de Dourados e Maracaju em Mato grosso do Sul, Pesqueira et al. (2015) observou que as aplicações de fungicidas que possuem o ingrediente ativo carbendazim, isolado ou em mistura, proporcionou o melhor controle de antracnose na parte área das plantas, reduzindo a desfolha. Sendo que a associação de carbendazim + ciproconazole + picoxistrobina apresentou maior controle da incidência de antracnose nas duas avaliações realizadas.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>AACPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TMG 7063</td>
</tr>
<tr>
<td>Fox xPro®</td>
<td>63,88 aA</td>
</tr>
<tr>
<td>Fox xPro® + Unizeb Gold®</td>
<td>66,94 aA</td>
</tr>
<tr>
<td>Aproach Prima®</td>
<td>66,94 aA</td>
</tr>
<tr>
<td>Aproach Prima® + Unizeb Gold®</td>
<td>77,00 aA</td>
</tr>
<tr>
<td>Testemunha</td>
<td>72,63 aA</td>
</tr>
</tbody>
</table>

CV(%) 21,55

Médias seguidas pela mesma letra minúscula na coluna, para tratamentos, e maiúscula na linha, para cultivares, não diferem entre si pelo teste de LSD a 5% de probabilidade. Para fins de estatística, médias foram transformados em $\sqrt{x} + 1$.
Resultado similar foi observado por DIAS et al. (2016), estudando o controle químico de antracnose na região norte do Brasil, onde a aplicação de diferentes fungicidas contendo estrobirulinas e triazóis não apresentou diferença significativa entre tratamentos incluindo a testemunha.

A germinação dos uredóspos de *P. pachyrhizi* foi inibida pela ação dos fungicidas, diferindo significativamente da testemunha, onde a maior inibição na germinação foi obtida em tratamentos cuja mistura continha o ingrediente ativo mancozeb (Quadro 9). Os fungicidas cujo ingrediente ativo é o mancozeb tem ação multissítio (FRAC, 2018) atuando em diversos processos metabólicos vitais da célula fungica levando o micro-organismo a morte (RODRIGUES, 2006). Na literatura não é encontrado relato de populações de patógenos resistentes aos produtos que possuem modo de ação multissítio, sendo assim o resultado observado está relacionado a sensibilidade do patógeno à molécula química.

Os resultados obtidos permitem expressar diferença de sensibilidade do fungo aos diferentes fungicidas, dependendo do princípio ativo. As menores porcentagens de germinação obtidas constaram-se da testemunha e Fox xPro® , havendo diferença significativa entre eles. Resultado semelhante foi obtido por Moura et al. (2016) onde a piracetrolistrobina e a mistura trifloxistrobina + protoconazole foi eficiente inibindo a germinação de diferentes isolados de *Phakopsora pachyrhizi*.

QUADRO 9. Germinação (%) de uredóspos de *Phakopsora pachyrhizi* após a exposição em diferentes formulações mistas UFGD, Dourados-MS, 2018.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Germinação (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testemunha</td>
<td>90,4 c</td>
</tr>
<tr>
<td>Fox xPro®</td>
<td>30,0 b</td>
</tr>
<tr>
<td>Fox xPro® + Unizeb Gold®</td>
<td>4,8 a</td>
</tr>
<tr>
<td>Aproach Prima®</td>
<td>14,4 ab</td>
</tr>
<tr>
<td>Aproach Prima® + Unizeb Gold®</td>
<td>4,8 a</td>
</tr>
<tr>
<td>CV(%)</td>
<td>23,42</td>
</tr>
</tbody>
</table>

Médias seguidas por letras iguais na coluna não diferem entre si no teste Tukey a 5% de probabilidade. Para fins de estatística, médias foram transformadas em arco seno de $\sqrt{x + 1}$.

A mesma tendência foi obtida por TERAMOTO et al. (2017) estudando a sensibilidade in vitro de diferentes isolados de Corynespora cassiicola sob a ação de diferente fungicidas, onde a piraclostrobina proporcionou a maior inibição da germinação de esporos.

Além do efeito na germinação de esporos de P. pachyrhizi, também foi detectado o efeito da associação de estrobirulinas e triazol (trifloxistrobina + tebuconazole) sobre o crescimento micelial de Colletotrichum gloeosporioides, (LOPES et al., 2015).
5. CONCLUSÃO

Em função da variação climática durante a condução do ensaio a campo, não foram constatadas diferenças significativas para AACPD de urédias e lesões de *Phakopsora pachyrhizi* em plantas de soja.

O efeito da aplicação de diferentes formulações, mistas, no controle de antracnose, foi observado apenas no estágio R5.1 e R5.5.

Todos os fungicidas afetaram a germinação de esporos, onde a maior inibição da germinação foi obtida em associação Fox xPro®+ Unizeb Gold® e Aproach Prima®+ Unizeb Gold®.
6. REFERÊNCIAS BIBLIOGRÁFICAS

SILVA, V. A. S.; JULIATTI, F. C. Resistência parcial e fungicidas no controle da ferrugem asiática da soja. 2007. Dissertação (Mestrado na área de concentração em Fitopatologia) - Universidade Federal de Uberlândia, Uberlândia-MG.

ZAMBENEDETTI, E. B. Preservação de Phakopsora pachyrhizi Sydow e Sydow e aspectos epidemiológicos e ultra estruturais da sua interação com a soja (Glycine max (L.) Merril). 2005, 92 f. Dissertação (Mestrado em Agronomia/Fitopatologia) – Universidade Federal de Lavras, Lavras-MG.
