UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

ESTIMAÇÃO DE PARÂMETROS GENÉTICOS E ÍNDICE DE SELEÇÃO EM GENÓTIPOS DE Brachiaria brizantha

KELEN CRISTINA BASSO

DOURADOS MATO GROSSO DO SUL - BRASIL 2006

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

ESTIMAÇÃO DE PARÂMETROS GENÉTICOS E ÍNDICE DE SELEÇÃO EM GENÓTIPOS DE Brachiaria brizantha

KELEN CRISTINA BASSO

Zootecnista

Orientador:

Prof. Dr. MANOEL CARLOS GONÇALVES

Co-orientadores:

Profa. Dra. BEATRIZ LEMPP
Dra. ROSÂNGELA MARIA SIMEÃO RESENDE

Dissertação apresentada à Universidade Federal da Grande Dourados, como parte das exigências do Programa de Pós-Graduação em Agronomia, para obtenção do título de Mestre.

DOURADOS MATO GROSSO DO SUL - BRASIL 2006

Dedico

A Maria Aparecida Spigoti Basso e Eduardo Basso exemplo de perseverança e devoção para com seus ideais.

Dos quais tenho muita honra de ser filha.

AGRADECIMENTOS

A **DEUS**, pela vida e oportunidades.

A Universidade Federal da Grande Dourados, pela oportunidade concedida.

A Embrapa Gado de Corte pela oportunidade de desenvolver meu trabalho.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela concessão da bolsa de mestrado.

Ao Professor Manoel Carlos Gonçalves (Orientador) pela orientação e confiança.

A Professora Dra. Beatriz Lempp (Coorientadora), com toda a minha admiração, pela amizade e pelo seu exemplo de dedicação ao trabalho.

A Dra. Rosângela Maria Simeão Resende (Coorientadora), meu respeito e admiração, diante da dedicação em suas pesquisas e do domínio de conhecimentos que possui e transmite aos seus orientados, meus sinceros agradecimentos.

A Dra. Cacilda Borges do Valle, pela oportunidade de desenvolver este importante trabalho, será sempre um exemplo de competência e sucesso profissional.

A todos os professores e colegas do curso de Produção Vegetal.

Ao meu querido irmão Kleber, por ser tão amigo e pela ajuda no desenvolvimento deste trabalho.

As amigas Inês, Adriana e Elaine pela amizade, pelos conselhos e convivência, contribuíram para que eu desenvolvesse com mais confiança meu trabalho.

Aos meus amigos Dr. Gelson Difante e Dras. Denise Montagner, Carine Cimoni e Lucimara Chiaria pela amizade, ensinamentos e excelente convivência.

Aos primos Milene e Leandro Basso por me acolher nos momentos difíceis.

Aos demais amigos e colegas que fiz em Dourados e em Campo Grande e vão ficar nas minhas lembranças, entre eles: José Hortêncio, Kamilla, Ana Nídia, Irineu (Junior), Alisson (Gaúcho), Lafaiete, Talita, Elton (Sinop), Elda, Roberta, Jussilara, Letícia, Sandra e Daniel.

Enfim, a todos que direta ou indiretamente participaram para que este trabalho pudesse ser realizado.

ÍNDICE

LISTA DE TABELAS.
LISTA DE ANEXOS
RESUMO
ABSTRACT
1. INTRODUÇÃO
2. REVISÃO DE LITERATURA
2.1. Consideração sobre <i>Brachiaria brizanth</i>
2.2. Melhoramento genético da espécie
2.3. Parâmetros genéticos
2.4. Índices de seleção
3. MATERIAL E MÉTODOS
3.1. Localização do experimento
3.2. Materiais e delineamento experimental
3.3. Caracteres avaliados
3.4. Análise dos dados individuais
3.5. Repetibilidade ao nível de média de avaliações
3.6. Índice de seleção
4. RESULTADOS E DISCUSSÃO
4.1. Parâmetros genéticos para os períodos das águas e secas
4.2. Parâmetros genéticos anuais.
4.3. Estimativas de correlações genéticas entre os caracteres
4.4. Determinação do número de medições na avaliação de genótipos de
brizantha
4.5. Índice de seleção
4.6. Ordenamento dos genótipos avaliados
5. CONCLUSÕES
REFERÊNCIAS BIBLIOGRÁFICAS
ANEXOS

LISTA DE TABELAS

		Página								
Tabela 1	Características físicas e químicas originais do solo na área experimental	13								
Tabela 2	Número de cortes realizados, número de genótipos avaliados e período de avaliação para cada campo experimental									
Tabela 3	Notas de velocidade e densidade de colmos rebrotados atribuídas ao caráter rebrota									
Tabela 4	Parâmetros de herdabilidade (h_g^2) , repetibilidade (r) e média geral estimados para os caracteres vigor, rebrota, matéria seca total (MST), $F(\%)$, MSF e MSV avaliados no período das águas, em genótipos de <i>Brachiaria brizantha</i> em quatro campos experimentais.	21								
Tabela 5	Parâmetros de herdabilidade (h_g^2) , repetibilidade (r) e média geral estimados para os caracteres vigor, rebrota, MST, F(%), MSF e MSV avaliados no período da seca, em genótipos de <i>Brachiaria brizantha</i> em quatro campos experimentais.	22								
Tabela 6	Variância genotípica (Vg), variância ambiental (Ve), variância fenotípica (Vf), herdabilidade (h_g^2), repetibilidade (r) e média geral para todos os caracteres avaliados para todos os campos experimentais em todos os cortes de avaliação.	24								
Tabela 7	Estimativa de correlação genética para os caracteres avaliados nos quatro campos experimentais	26								
Tabela 8	Estimativas dos coeficientes de herdabilidade (h_g^2) e repetibilidade (ρ) para matéria seca foliar (MSF), porcentagem de folhas (F(%)) e rebrota (REB) para 6, 12 e 18 avaliações em genótipos de <i>Brachiaria brizantha</i> para os quatro campos de avaliação no período das águas.	28								
Tabela 9	Estimativas dos coeficientes de herdabilidade (h_g^2) e repetibilidade (ρ) para matéria seca foliar (MSF), porcentagem de folhas (F(%)) e rebrota (REB) para 6, 12 e 18 avalições em genótipos de <i>Brachiaria brizantha</i> para os quatro campos de avaliação no período da seca.	28								
Tabela 10	Estimativa do número de medições para os caracteres matéria seca foliar (MSF), porcentagem de folhas (F(%)), rebrota (REB) e Vigor de acordo com o coeficiente de determinação (R²), em genótipos de <i>Brachiaria brizantha</i> para os quatro campos de avaliação.	30								

Tabela 11	Ordenamento dos 98 genótipos (B) pertencentes ao campo um com base em índice de seleção estabelecido pela importância relativa de cada caráter	31
Tabela 12	Ordenamento dos 63 genótipos (B) pertencentes ao campo dois com base em índice de seleção estabelecido pela importância relativa de cada caráter	33
Tabela 13	Ordenamento dos 17 genótipos (B) pertencentes ao campo três com base em índice de seleção estabelecido pela importância relativa de cada caráter	33
Tabela 14	Ordenamento dos 41 genótipos (B) pertencentes ao campo quatro com base em índice de seleção estabelecido pela importância relativa de cada caráter	34
Tabela 15	Ordenamento dos 30 melhores genótipos e as testemunhas cv. Marandu (30) e cv. Xaraés (178) de <i>Brachiaria brizantha</i> baseado nos efeitos genotípicos preditos para cada característica agronômica avaliada nos períodos das águas (A) e seca (S)	35

LISTA DE ANEXOS

		Página
Anexo 1	Identificação (ID) dos 218 genótipos de <i>Brachiaria brizantha</i> avaliados na Embrapa Gado de Corte seus respectivos locais de origem e suborigem, latitude, longitude e altitude (m)	44
Anexo 2	Ordenamento dos 98 genótipos de <i>Brachiaria brizantha</i> do campo experimental um com base em índice de seleção estabelecido pela somatória da importância relativa de cada característica agronômica avaliada e ranking dos genótipos para cada caráter.	48
Anexo 3	Ordenamento dos 63 genótipos de <i>Brachiaria brizantha</i> do campo experimental dois com base em índice de seleção estabelecido pela somatória da importância relativa de cada característica agronômica avaliada e ranking dos genótipos para cada caráter.	50
Anexo 4	Ordenamento dos 17 genótipos de <i>Brachiaria brizantha</i> do campo experimental três com base em índice de seleção estabelecido pela somatória da importância relativa de cada característica agronômica avaliada e ranking dos genótipos para cada caráter.	52
Anexo 5	Ordenamento dos 41 genótipos de <i>Brachiaria brizantha</i> do campo experimental quatro com base em índice de seleção estabelecido pela importância relativa de cada característica agronômica avaliada e ranking dos genótipos para cada caráter.	52
Anexo 6	Ordenamento dos 218 genótipos e as testemunhas cv. Marandu (30) e cv. Xaraés (178) de <i>Brachiaria brizantha</i> baseado nos efeitos genotípicos preditos para cada característica agronômica avaliada nos períodos das águas (A) e seca (S).	53

RESUMO

BASSO, K.C. Universidade Federal do Mato Grosso do Sul, fevereiro de 2006. **Estimação de parâmetros genéticos e índice de seleção em genótipos de** *Brachiaria brizantha*. Orientador: Dr. Manoel Carlos Gonçalves. Coorientadoras: Dra. Beatriz Lempp e Dra. Rosângela Maria Simeão Resende.

Atualmente, a Brachiaria brizantha é a gramínea forrageira tropical com maior área cultivada no Brasil e é responsável por grande parte do mercado de sementes e pelo incremento na produtividade animal. São muitos os genótipos superiores que estão contidos nos bancos de germoplasma originários do continente africano foram avaliados em parcelas no campo. A seleção dos genótipos mais promissores deve ser realizada com base nos valores genotípicos preditos dos indivíduos a fim de conferir maior confiabilidade e minimizar o efeito ambiental de múltiplos campos de avaliação num período de 10 anos. O procedimento padrão para predição de valores genéticos foi o BLUP (melhor predição linear não viciada) individual, usando estimativas de componentes de variância obtidas pelo método de máxima verossimilhança restrita (REML) em um modelo individual. Com o objetivo de selecionar os materiais superiores para características agronômicas foram avaliados 218 genótipos de B. brizantha distribuídos em quatro campos experimentais na Embrapa Gado de Corte em Campo Grande, MS e avaliados por um período mínimo de dois anos. O delineamento utilizado foi o de blocos ao acaso com três repetições e as testemunhas foram as cvs. Marandu e Xaraés. Os melhores valores para o coeficiente de repetibilidade e herdabilidade foram encontrados para porcentagem de folhas e rebrota indicando-os como bons parâmetros para seleção. Os genótipos com maior valor genotípico predito pelo índice de seleção aditivo foram B72, B188, e B252 tendo um desempenho de 24, 20 e 21% superior à testemunha cv Marandu, respectivamente para os campos um, dois e quatro. Para o campo três a cv Xaraés apresentou melhores resultados, sendo superior cv Marandu em 26%. Pelo resultado da avaliação dos efeitos genotípicos preditos foi possível realizar um ranking dos materiais mais promissores e B72 e B178 destacaramse para matéria seca foliar nas águas e secas, B252 e B172 para porcentagem de folhas e B252 e B71 para rebrota.

Palavras-chave: forrageira tropical, herdabilidade, REML/BLUP, repetibilidade.

ABSTRACT

BASSO, K.C. Universidade Federal do Mato Grosso do Sul. **Genetic parameters and selection index estimation in** *Brachiaria brizanta* **genotypes.** Orientador: Dr. Manoel Carlos Gonçalves. Coorientadoras: Dra. Beatriz Lempp e Dra. Rosângela Maria Simeão Resende.

Nowadays, the *Brachiaria brizantha* is the tropical grass with greatest cultivated area in Brazil, being responsible by a major part of the seeds market and by the increase in animal production. Many are the superior genotypes in relation to commercial genotypes available in the germoplasm banks, that were collected in the African Continent and need evaluations. The selection of these genotypes must be based on predicted genotype values of the individuals in function of being perennial plants and of unsexed propagation The standard procedure for the prediction of genetic values is the individual BLUP (Best Linear Unbiased Predictor), using estimates of variance components achieved by the restricted maximum likelihood (REML) under individual model. With the aim of selecting B. brizantha materials superior to the commercial cultivars in relation to the agronomic traits, 213 genotypes were evaluated in four experimental fields in the Embrapa Gado de Corte in Campo Grande, MS. The fields were conducted in different times, being that field one was evaluated through three years, and the others through two years. The agronomic traits evaluated were: vigor, growth, total dry matter (MST), green dry matter (MSV) leaves percentage (PF), leaf dry mater (MSF). The utilized experimental design was that of randomized blocks in three replications, being the cultivars Marandu and Xaraés the witnesses. The best repeatability and heritability coefficients were found to leaves percentage (0.51 and 0.51) and growth (0.44 and 0.41), respectively, indicating that these estimates are good selection parameters. The genotypes with greater predicted genetic value by the additive selection index were: B72, B188, and B252, with a performance 24, 20, and 21% superior to the Marandu cv., respectively, to the fields one, two, and four. Yet the results attained in in field three in relation to the index indicated superiority (26%) of the Xaraés cv. In relation to the Marandu cv.. Through the results of the evaluation of the predicted genetic effects it was possible to organize a ranking of the most promising genotypes, being that B72 and B178 were the best for leaf dry matter in the wet and dry seasons, and B252 and B172 for leaves percentage, and B252 and B71 for growth.

Keywords: tropical forage; heritability; REML/BLUP, repeatability.

1. INTRODUÇÃO

O cultivo de gramíneas forrageiras tropicais no Brasil vem promovendo consideráveis incrementos na produção de carne e leite a pasto. A área de pastagens aumentou 17% nos últimos 32 anos, enquanto que a produção de carne aumentou em torno de 114%. Este aumento deve-se não somente à adoção de novas tecnologias pelos pecuaristas, como vacinação, mineralização e técnicas de manejo das pastagens, mas também ao uso de novas forrageiras mais adaptadas e produtivas, desenvolvidas pelas instituições de pesquisa (Jank et al, 2005).

Os ganhos em produtividade animal associados à expansão do cultivo de pastagens melhoradas em áreas de pastagens nativas, especialmente para o cerrado, são provas do benefício proporcionado pela obtenção de genótipos mais produtivos e adaptados a diferentes ambientes (Rossmann, 2001).

Nas duas últimas décadas foram envidados esforços consideráveis para a reunião de grande base de germoplasma de gramíneas e leguminosas forrageiras valiosas para o desenvolvimento de novas cultivares, com ênfase em solos ácidos e de baixa fertilidade. A otimização efetiva de tais recursos vem ocorrendo via programas de melhoramento de forrageiras pelo mundo tropical em andamento que buscam acessar esta variabilidade, avaliar e desenvolver novas cultivares para o benefício do produtor e em última instância para o consumidor (Valle et al, 2001).

Dentre as forrageiras de maior relevância para pastagens tropicais no Brasil, destaca-se o gênero *Brachiaria*. O conhecimento da variabilidade e da divergência genética entre os genótipos e as espécies deste gênero é de fundamental importância para a obtenção de sucesso no melhoramento intra e interespecífico neste gênero. Considerando que a *B. brizantha* é uma das espécies mais importantes para o sistema de produção, sendo a cv.

Marandu responsável por cerca de 33,7% das sementes comercializadas no país (Jank et al, 2005).

No Brasil a lotação média das pastagens está ao redor de 0,85 cabeças por hectare, menos da metade das lotações médias obtidas em outros países como França, Nova Zelândia, Irlanda, Inglaterra e Itália (Assis, 2001). Para reverter essa situação os produtores vêm melhorando o potencial genético de seus animais, que se tornam mais exigentes quanto à sua nutrição, sendo necessário melhorar também a qualidade e aumentar a produção das forrageiras fornecidas a esses animais.

As forrageiras utilizadas na exploração da pecuária brasileira estão fundamentadas sobre uma base genética estreita ao se considerar o número reduzido de cultivares disponíveis para a formação de pastagens e o modo de reprodução predominante é a apomixia, reprodução assexuada por sementes (Valle et al, 2001). A pouca variabilidade existente torna as pastagens vulneráveis ao ataque de pragas e doenças, além de limitar o desenvolvimento de cultivares adaptadas a diferentes condições edafoclimáticas e a sistemas de produção específicos (Valle e Souza, 1995).

Lempp et al (2004) enfatizaram a necessidade de elevar não apenas a variabilidade genética das gramíneas utilizadas na implantação de pastagens como melhorar o seu valor nutritivo, através do lançamento de novas cultivares comerciais. Como o gênero *Bracharia* apresenta elevado número de acessos e de espécies, o melhoramento genético, visa melhorar tanto os atributos agronômicos como os qualitativos desta gramínea.

O objetivo deste trabalho foi justamente estimar parâmetros genéticos para caracteres agronômicos em *B. brizantha* e fornecer subsídios para a seleção de genótipos mais promissores utilizando-se como critério o índice de seleção.

2. REVISÃO DE LITERATURA

2.1. Considerações sobre Brachiaria brizantha

O gênero *Brachiaria* é constituído por cerca de cem espécies, pertencente à tribo *Paniceae*. Foi descrita por Trinius em 1834 como uma subdivisão de *Panicum*, sendo posteriormente elevada à categoria de gênero por Grisebach em 1853 (Renvoize et al, 1998). As espécies se distribuem por todo o trópico, no entanto, a maioria se encontra na África. Ocupam distintos ecossistemas, como pântanos, bosques ligeiramente sombreados e até regiões semidesérticas, concentrando-se, porém, nas savanas africanas (Assis, 2001).

B. brizantha é originária de regiões vulcânicas da África, onde os solos apresentam bons níveis de fertilidade. Trata-se de uma planta perene, cespitosa, robusta, que possui de 1,5 a 2,5 m de altura. Apresenta ampla adaptação climática até 3000 m acima do nível do mar, com precipitação anual variando entre 700-3000 mm. Não tolera solos encharcados, no entanto exibe boa tolerância ao sombreamento e ao fogo. Alguns genótipos apresentam boa resistência a cigarrinha-das-pastagens (Homoptera: Cercopidae). Pode ser cultivada em solos ondulados a fortemente ondulados. Possui bom valor forrageiro, alta produção de massa verde e alta produção de sementes viáveis. É representada nas pastagens brasileiras pela cultivar Marandu, lançada pela Embrapa Gado de Corte e pela Embrapa Cerrados em 1984 (Nunes et al, 1984). Foi avaliada e selecionada em Ibirarema, São Paulo, proveniente da estação de pesquisa do Zimbábue, África. Seus pontos positivos principais são resistência à cigarrinha, palatabilidade e qualidade de forragem (Keller-Grein et al, 1998).

A cultivar Xaraés foi o lançamento mais recente da espécie feito também pela Embrapa Gado de Corte, em 2003 com o objetivo de promover a diversificação de pastagens desmotivando o monocultivo da cv. Marandu (Jank et al, 2005). Originária da região de Cibitoke no Burundi, foi introduzida pela Embrapa em 1986, juntamente com uma coleção de cerca de 350 acessos de 15 espécies diferentes (Valle, 1990).

A cv. Xaraés vem sendo estudada pela rede de avaliação de pastagens há mais de 10 anos. Em ensaios em canteiros apresentou elevada produção de forragem, chegando a 21 t/ha de matéria seca, com 30% dessa produção no período seco (Valle et al, 2001). A porcentagem de folhas chegou a 66,8% do total de forragem produzida. O estabelecimento é rápido e a rebrota é superior à cv. Marandu, com taxas de crescimento em média de 28,2 e 9,80 kg/ha/dia nas águas e 17,9 e 6,7 kg/ha/dia na seca, para Xaraés e Marandu respectivamente (Euclides et al, 2001). O florescimento é tardio e concentrado (outono – maio/junho) e a produtividade de sementes chega a 120 kg/ha/ano de sementes puras em colheitas pelo método de pilha.

Euclides (2002) comparou as cultivares Xaraés e Marandu em relação ao ganho de peso e número de animais por área. No primeiro ano de avaliação os ganhos de peso por animal foram semelhantes para as duas cultivares, porém a cv. Xaraés apresentou maior capacidade de suporte resultando em uma produção de carne (kg/ha/ano) 35% superior à cv. Marandu.

2.2. Melhoramento genético da espécie

O objetivo do melhoramento genético de braquiária, em termos gerais, é desenvolver uma variedade apomítica produtiva e de alta qualidade, que combine a persistência e a adaptação a solos ácidos de baixa fertilidade encontrada na *B*.

decumbens cv. Basilisk com a resistência a cigarrinha-das-pastagens verificada na *B. brizantha* cv. Marandu (Miles e Valle, 1998).

Os genótipos de *B. Brizantha* são predominantemente tetraploides (2n=4x=36) e apomíticos. A apomixia é uma forma de reprodução assexual (agamospermia), resultando na produção de sementes sem que haja a fusão dos gametas masculino e feminino. Segundo Savidan (1985), o principal tipo de apomixia das gramíneas tropicais resulta da combinação da aposporia (desenvolvimento do saco embrionário a partir de células somáticas do nucelo) com a partenogênese (desenvolvimento de propágulos sem fecundação).

A grande vantagem da apomixia é que uma vez identificado um tipo superior pode-se mantê-lo por meio das sementes que, por serem clonais, preservam o mesmo genótipo da planta-mãe (Pereira et al, 2001).

O programa de lançamento de forrageiras passa por fases especificas de avaliação. A fase 1 consiste na avaliação de um grande número de genótipos quanto a características que conferem adaptação, como resistência à seca, capacidade de rebrota após o corte, acúmulo de massa verde, presença de pragas e doenças, entre outras. Na fase dois, baseada em um número menor de genótipos selecionados na fase 1, avalia-se o efeito do animal sobre a forragem, onde a seleção é feita com base na produtividade, relação folha/caule, rebrota, resistência à cigarrinha, capacidade de suporte e consumo animal. Na fase três avalia-se o efeito da forragem sobre o desempenho animal, sendo os animais pesados com freqüência determinada a fim de se obter o ganho por animal e por área. Esse esquema de avaliação de plantas forrageiras requer, no mínimo, seis anos de avaliação contínua para que uma nova cultivar possa ser obtida (Valle e Souza, 1997).

2.3. Parâmetros genéticos

A obtenção de estimativas de parâmetros genéticos, tais como herdabilidades, correlações genéticas e ganhos esperados com seleção, tem importância muito grande em programas de melhoramento genético, pois possibilitam a tomada de decisões relacionadas com a escolha do método mais apropriado e permitem também determinar os caracteres que devem ser selecionados em etapas iniciais e avançadas de um programa de melhoramento e o peso que deve ser atribuído a cada caráter, separadamente ou em conjunto (Rossmann, 2001).

A eficiência do melhoramento depende do conhecimento do controle genético dos caracteres a serem melhorados. Para um caráter quantitativo, o controle genético ou base genética, inclui todos os mecanismos genéticos responsáveis pela sua herança, tais como, herdabilidade, repetibilidade, associações genéticas com outros caracteres, interações genéticas com o ambiente, variação genética aditiva e de dominância (Resende et al, 1995).

A herdabilidade (h²) é um dos parâmetros genéticos mais informativos para o trabalho do melhorista. Este parâmetro fornece a proporção da variância genética presente na variância fenotípica total. Dessa forma, ela mede a confiabilidade do valor fenotípico como indicador do valor genético, para espécies que se reproduzem sexuadamente e são propagadas pelo cultivo de sementes. Ela pode ser estimada em sentido amplo (h²g) e sentido restrito (h²a). A herdabilidade no sentido amplo considera toda a variação genética aditiva e não aditiva sendo mais importante para o melhorista de espécies de propagação assexuada (Ramalho et al, 1993), como as espécies apomíticas.

A herdabilidade no sentido restrito é determinada pela relação entre a variância genética aditiva e a variância fenotípica (Dudley e Moll, 1969 citados por Resende, 2001) e tem como finalidade orientar o melhorista sobre a quantidade relativa de variância genética que é utilizável no melhoramento, em descendências propagadas sexualmente.

O coeficiente de herdabilidade tanto no sentido restrito como no sentido amplo, pode variar de zero a um. No caso de h² = 1 as diferenças fenotípicas entre os indivíduos são causadas unicamente por diferenças genéticas entre os mesmos. Quando h² = 0, significa que a variabilidade do caráter não tem origem genética. Neste caso não existe correlação alguma entre valor genético e valor fenotípico da unidade de seleção (Allard, 1971).

O coeficiente de repetibilidade é amplamente usado pelos geneticistas como medida do limite superior da herdabilidade e da eficiência da predição do valor genético a partir de sucessivas medições no indivíduo. Com base neste coeficiente pode-se avaliar se o número de avaliações realizadas é suficiente para inferir sobre a superioridade genotípica com determinado grau de certeza (Shimoya et al, 2002).

Segundo Lush (1937) citado por Resende (2002) o coeficiente de repetibilidade é conceituado como correlação fenotípica intraclasse e, portanto, no caso de indivíduos refere-se às correlações fenotípicas entre medições repetidas no mesmo indivíduo. Na prática, este parâmetro apresenta importância fundamental na predição de valores genéticos e genotípicos e na inferência sobre o aumento da eficiência seletiva pelo uso de um determinado número de medições por indivíduo, fator que permite determinar o número de avaliações a ser adotado em um programa de melhoramento de forrageiras.

Outra medida de grande importância para o melhorista é a estimativa das correlações genéticas e fenotípicas entre características; por meio delas pode-se conhecer quanto uma característica pode influenciar na expressão de outras.

Para o melhoramento genético, as correlações de natureza genética são mais importantes, principalmente quando os caracteres envolvidos possuem herança complexa, ou seja, governados por vários genes, cada gene com pequeno efeito no caráter e alta participação do ambiente. No estudo destes caracteres, a herdabilidade tem elevada importância, porque representa o efeito cumulativo de todos os locos que afetam determinado caráter. Sendo assim, a utilização da herdabilidade associada às correlações genéticas, pode auxiliar o melhorista a maximizar seus ganhos no processo de seleção de caracteres quantitativos (Marchioro et al, 2003).

A correlação fenotípica entre dois caracteres pode ser diretamente mensurada, em certo número de indivíduos da população. Essa correlação tem causas genéticas e ambientais, porém, só a genética envolve uma associação de natureza herdável, podendo, por conseguinte, ser utilizada em programas de melhoramento. As correlações genéticas e ambientais para um mesmo caráter são freqüentemente muito diferentes em magnitude e eventualmente diferentes em sinal. Isto indica que as causas de variação genética e de ambiente afetam os caracteres por meio de mecanismos fisiológicos diferentes (Falconer e Mackay, 1996).

O conhecimento da correlação entre caracteres é de extrema importância para os programas de melhoramento genético de plantas, principalmente quando é desejado exercer seleção simultânea de caracteres, ou quando um caráter de interesse evidenciar reduzida herdabilidade, problemas de aferição e/ou identificação. Neste caso, quando a seleção é aplicada sobre um caráter de expressiva herdabilidade e que apresenta alta correlação com outro caráter de interesse, o melhorista poderá obter ganhos

significativos usando exclusivamente a seleção direta sobre o caráter de alta herdabilidade (Marchioro et al, 2003).

Para o conhecimento dos valores genéticos vem sendo utilizado o procedimento BLUP (melhor predição linear não viciada), usando estimativas de componentes de variância obtidas pelo método de máxima verossimilhança restrita (REML), utilizado em detrimento da análise de variância para situações mais complexas. Estes procedimentos lidam naturalmente com o desbalanceamento de dados devido a vários motivos tais quais perdas de plantas e parcelas, desiguais quantidades de mudas por tratamento e diferentes delineamentos experimentais (Resende, 2005).

O procedimento REML/BLUP esta associado a um modelo linear misto, e tem como principais vantagens: permitir comparar indivíduos através do tempo (gerações, anos) e espaço (locais, blocos), permitir a simultânea correção para os efeitos ambientais, estimação de componentes de variância e predição de valores genéticos, lida com estruturas complexas de dados como medidas repetidas, anos, locais e delineamentos diferentes (Resende, 2005).

2.4. Índice de seleção

Uma das maneiras de se melhorar a eficiência de um programa de melhoramento é a seleção simultânea de um conjunto de caracteres de importância agronômica. A utilização de um índice de seleção parece ser adequada, pois permite combinar as informações obtidas nas parcelas experimentais, de modo a possibilitar a seleção com base em um conjunto de variáveis que reúnam os atributos de interesse (Cruz e Regazzi, 1994).

De maneira geral, o ganho sobre o caráter de interesse é reduzido, entretanto esta redução é compensada por uma melhor distribuição de ganhos favoráveis nos demais caracteres. Diferentes índices representam diferentes alternativas de seleção e, consequentemente, de ganhos. Eles identificam, de maneira rápida e eficiente, materiais genotípicos que podem ser mais adequados, para os propósitos do melhorista (Cruz e Regazzi, 1994).

Os índices de seleção consideram, simultaneamente, todos os caracteres de interesse, gerando uma variável adicional que resulta da ponderação dos caracteres por meio de coeficientes calculados com base nas herdabilidades, valores econômicos relativos e correlações genéticas e fenotípicas entre os caracteres. A construção dos índices de seleção baseia-se em equações de regressão múltipla que permitem predizer o valor genético ou genotípico global dos indivíduos, os quais são funções lineares dos valores genéticos ou genotípicos associados a cada caráter (Resende, 2002a).

Existem vários métodos de construção de índices de seleção que são utilizados de acordo com o tipo de seleção a ser empregada num programa de melhoramento genético. O índice otimizado que foi o primeiro relatado na literatura, foi desenvolvido por Smith em 1936 e tem como objetivo maximizar a correlação entre o índice e o valor genotípicos dos indivíduos, sendo posteriormente adaptado por Hazel em 1943 para ser aplicado no melhoramento animal, e por isso, alguns autores o denominam de índice Smith-Hazel (Santos, 2005).

Humphreys (1995), empregou o índice otimizado (Smith 1936) na seleção de famílias de meios irmãos de azevém (*Lolium perenne* L.) observando boa concordância entre a resposta predita para a seleção com base no índice e a resposta observada à seleção feita sem a aplicação de um índice formal.

O índice de Hazel é em teoria o mais acurado e na prática ele será realmente melhor se as estimativas dos parâmetros genéticos forem confiáveis. Em situações que isso não acontece, os índices simplificados podem conduzir a melhores resultados (Resende, 2002a).

Existem também os índices de seleção não lineares que podem ser aplicados teoricamente tanto em seleção recorrente quanto em seleção de cultivares. O primeiro índice foi o multiplicativo, proposto por Elston (1963), o qual possui como característica pressupor que as observações fenotípicas são boas aproximações dos valores genotípicos, de onde se deduz a necessidade de obter dados experimentais precisos para que o índice possa realmente possibilitar a seleção dos melhores genótipos (Santos, 2005).

O índice multiplicativo possibilita que, sem necessidade de estimativas de parâmetros genéticos e fenotípicos, sejam selecionados aproximadamente os mesmos genótipos que seriam pelo emprego do índice linear, tendo ainda a vantagem de permitir o descarte dos genótipos com caracteres em níveis inferiores, pelo simples uso da função multiplicativa (Garcia, 1998).

Em seguida surgiu o índice que se baseia em medidas de distância dos genótipos a um genótipo já existente ou não na população e que possui o melhor desempenho em todos os caracteres visados na seleção, e depois o índice de soma de postos que classifica os genótipos em relação a cada um dos caracteres a serem incluídos no índice (Santos, 2005).

O índice de seleção utilizando valores genéticos preditos permite que os indivíduos possam ser classificados de acordo com seu valor genético. Quando esses valores do caráter objetivo do estudo ou do agregado genético, ou seja, todos os caracteres relacionados ao objetivo, não são preditos diretamente, os valores genéticos

preditos de vários caracteres auxiliares podem ser utilizados na construção de um índice de seleção para cada indivíduo, incorporando-se os pesos econômicos e as covariâncias genéticas entre os caracteres (Barwik, 1992 citado por Resende, 2002a).

Whiteman et al (1992) estudaram o efeito de sete índices na seleção em 32 famílias de meios irmãos de *Eucalyptus nitens* L., aos nove anos de idade, levando em conta o diâmetro e a retidão do tronco e retenção de ramos. Os índices caracterizaram-se por incluir valores de plantas individuais, médias de famílias, ou de ambas. Os ganhos variaram de -3% a 20% no diâmetro do tronco, de -6% a 12% na retidão do tronco e de -28% a 18% na retenção de ramos. Entretanto em razão das correlações genéticas negativas entre retidão do tronco e retenção de ramos e entre este caráter e diâmetro do tronco, nenhum dos índices possibilitou a obtenção de ganhos nos três caracteres simultaneamente.

Os índices são procedimentos ótimos para obtenção de genótipos superiores e para ordenar os materiais avaliados neste trabalho, utilizou-se o índice de seleção aditivo que gerou uma variável adicional resultante da ponderação dos caracteres por meio de coeficientes calculados com base nas herdabilidades e em seus valores econômicos.

3. MATERIAL E MÉTODOS

3.1. Localização do experimento

O presente trabalho foi realizado a partir dos genótipos obtidos no Banco de Germoplasma de Brachiaria spp da Embrapa Gado de Corte, situada no município de Campo Grande – MS, a 20°27' de latitude sul, 54°37' de longitude oeste e altitude de 530 m. O experimento foi conduzido sem o uso de fertilizantes, em solo do tipo Latossolo Vermelho Escuro distrófico, ácido e de baixa fertilidade (Tabela 1), em relevo plano, com características representativas do cerrado brasileiro.

Tabela 1 - Características físicas e químicas originais do solo na área experimental

Areia	Silte	Argila	рН	P	M.O.	K	Ca+Mg	Al	CTC
	% ppm %				Meq/1	00cc			
59	8	33	4,2	1	2,7	0,05	0,1	0,9	6,9

3.2. Materiais e delineamento experimental

Foram avaliados 218 genótipos de *B. brizantha*, utilizando-se características agronômicas em quatro campos de avaliação. As testemunhas foram a cv Marandu para os quatros campos de avaliação e a cv Xaráes para os campos dois e três. A lista dos genótipos avaliados com as identificações, locais de origem, suborigem, latitude, longitude e altitude se encontram no Anexo 1. Os campos foram implantados por mudas As parcelas lineares com 5 m foram constituídas de cinco plantas, com espaçamento de 1 m entre plantas e 2 m entre parcelas. O delineamento experimental utilizado foi blocos ao acaso com três repetições. Como área útil da parcela foram consideradas as três plantas centrais da linha em cada repetição.

Os cortes dos genótipos foram realizados a cada 42 dias durante o período de chuvas, seguidos de um corte ao final do período seco, por dois anos consecutivos, exceto para o campo 1 que foi analisado por três anos (Tabela 2).

Tabela 2 - Número de cortes realizados, número de genótipos avaliados e período de

avaliação para cada campo experimental

Ensaio	Número de cortes		Número de	Início das	Final das
	Seca	Águas	genótipos	avaliações	avaliações
Campo 1	4	14	98	22/06/1988	08/10/1991
Campo 2	3	10	63	03/07/1991	04/10/1993
Campo 3	2	10	17	24/10/1996	13/10/1998
Campo 4	3	9	41	04/08/1998	03/10/2000

3.3. Caracteres avaliados

Foram avaliados seis caracteres agronômicos a cada corte realizado: acúmulo de massa seca (MST), acúmulo de matéria seca foliar (MSF) e matéria seca verde (MSV) em kg.ha⁻¹, porcentagem de folhas (F(%)), vigor (notas de 1 a 5) e rebrota (REB), notas de 1 a 6, sendo para o caráter vigor e rebrota:

V - vigor

1 = Excelente

2 = Bom

3 = Médio

4 = Fraco

5 = Ruim

Tabela 3. Notas de velocidade e densidade de colmos rebrotados atribuídas ao caráter rebrota.

Note	Densidade de rebrota	Símbolo	Velocidade de rebrota
Nota	Em % de perfilhos rebrotados		velocidade de rebrota
1	< 20%		pouco crescimento em altura
2	20 – 40%	+	crescimento médio em altura
3	40 – 60%	*	grande crescimento em altura
4	60 - 80%		
5	> 80%		

A nota final de rebrota foi dada pela combinação, das duas notas, como segue:

	•	+	*
1	0	1	2
2	1	2	3
3	2	3	4
4	3	4	5
5	4	5	6

As duas plantas das extremidades de cada parcela foram utilizadas para observações fenológicas e produção de sementes. Antes de cada corte foram feitas avaliações qualitativas por meio de notas para todas as parcelas. O peso verde da parcela foi determinado no campo no momento do corte e uma subamostra composta retirada para ser pesada no laboratório e depois separada em folhas, colmos e material morto. Essas amostras foram secas por 72 horas a 65°C em estufas com circulação de ar forçado. Após, tomou-se o peso seco dos componentes e foram realizados os cálculos dos caracteres, a saber:

- 1. PVP peso verde da parcela
- 2. PVA peso verde da amostra
- 3. F peso seco da folha
- 4. C peso seco do colmo
- 5. MM peso seco do material morto
- 6. VIG vigor da planta
- 7. REB avaliação de rebrota
- 8. NP Número de plantas

Sendo então calculadas as seguintes:

$$MST = ((PVP*PMS)/NP)*10$$

$$F(\%) = (F*100)/(F+C+MM)$$

$$MSF = (MST*F(\%))/100$$

$$PV = (F+C)/(F+C+MM)$$

$$MSV = MST*PV$$

Determinações:

- 1. MST acúmulo de massa seca total (kg.ha⁻¹)
- 2. F(%) porcentagem de folhas
- 3. MSF acúmulo de matéria seca foliar (kg.ha⁻¹)
- 4. MSV acúmulo de matéria seca de material verde (lâmina+colmo) (kg.ha⁻¹)

3.4. Análise dos dados individuais

O procedimento padrão para predição de valores genéticos é o BLUP (melhor predição linear não viciada), usando estimativas de componentes de variância obtidas pelo método de máxima verossimilhança restrita (REML).

Estes procedimentos lidam naturalmente com o desbalanceamento de dados, permitindo comparar indivíduos através de gerações e lidam com estruturas complexas

de dados como medidas repetidas (Resende, 2005). Por isso, para a análise dos dados foi utilizado o Software SELEGEN REML/BLUP (Resende, 2002b). Como cada caráter foi avaliado em várias medições em cada ano, foi realizada uma análise univariada para cada corte, visando considerar a questão da heterogeneidade de variância entre cortes. Desta forma foi empregado o seguinte modelo linear misto (avaliação de clones não aparentados, no delineamento em blocos ao acaso, com uma planta por parcela, uma medição por indivíduo, um só caráter):

y = Xb + Zg + e, em que:

y, b, g, e e: vetores de dados, dos efeitos de blocos (fixos), de efeitos genotípicos de clones (aleatórios), e de erros aleatórios.

X e Z: matrizes de incidência para b e g, respectivamente.

Estimou-se:

 $h_g^2 = \frac{\sigma_g^2}{\sigma_g^2 + \sigma_e^2}$: herdabilidade individual no sentido amplo no bloco, ou seja, dos efeitos

genotípicos, em que:

 σ_{g}^2 : variância genotípica entre clones;

 σ_e^2 : variância residual (ambiental).

A sequência de colunas no arquivo de dados para análise no software SELEGEN REML/BLUP (modelo 20) foi:

Indivíduo Clone Bloco Planta(coluna de 1) Variáveis

Baseados nos resultados dessa análise inicial, nos campos em que foi verificada a heterogeneidade de variância para os caracteres vigor, rebrota, matéria seca total, porcentagem de folhas, matéria seca das folhas e matéria seca verde, realizou-se a padronização dos mesmos (Varc), considerando-se o período (seca ou chuvas) e usando-

se o seguinte procedimento:
$$Varc = \left(\frac{S_{gi}}{S_{g}}\right)\left(\frac{S_{f}}{S_{fi}}\right)(Var)$$
, em que:

 S_{gi} : desvio padrão genotípico no corte i;

 $\boldsymbol{S}_{\mathrm{g}}$: média dos desvios padrões genotípicos de todos os cortes de água ou de seca;

 \mathbf{S}_{f} : média dos desvios padrões fenotípicos de todos os cortes de água ou de seca;

 $S_{\rm fi}$: desvio padrão fenotípico no corte i;

(Var): dados originais da variável j.

As variáveis padronizadas e as não padronizadas foram analisadas considerandose todos os cortes em cada período e todos os cortes avaliados para cada campo de avaliação, segundo modelo univariado de clones não aparentados, em blocos, com uma planta na parcela e medidas repetidas. Modelo linear misto:

$$y = Xb + Zg + Tp + e$$
, em que:

p: vetor de efeitos permanentes;

T: matriz de incidência para p, os outros termos são como descritos anteriormente.

A sequência de colunas no arquivo para análise (modelo 29) foi:

Indivíduo Clone Bloco-medição Permanente Planta (coluna de 1) Variáveis

Neste modelo foi ajustado um único efeito fixo (denominado combinação blocomedição) procedimento estatisticamente correto, bem como, desejável e necessário do ponto de vista computacional (Resende, 2002a).

Estimou-se:

$$h_g^2 = \frac{\sigma_g^2}{\sigma_g^2 + \sigma_p^2 + \sigma_e^2}$$
: herdabilidade individual no sentido amplo no bloco em uma dada

medição.

$$r = \frac{\sigma_g^2 + \sigma_p^2}{\sigma_g^2 + \sigma_p^2 + \sigma_e^2} :: repetibilidade individual no bloco.$$

$$c_{perm}^2 = \frac{\sigma_p^2}{\sigma_g^2 + \sigma_p^2 + \sigma_e^2}$$
:: coeficiente de determinação dos efeitos permanentes.

Sendo $\,\sigma_p^2\,$: variância ambiental permanente dentro do bloco.

3.5. Repetibilidade ao nível de médias de avaliações

A repetibilidade para a seleção individual ao nível de médias (ou totais) de m (6, 12 e 18) avaliações mensais foi dada por:

$$\rho_{im} = \frac{m\rho_i}{1+(m-1)\rho_i}$$

 ρ_{im} : repetibilidade média;

 ρ_i : repetibilidade individual;

m: número de medições

Por esta expressão, pode-se obter também que a herdabilidade para a seleção baseada em 6, 12 e 18 medições:

$$h_{aim}^2 = \frac{mh_i^2}{1 + (m-1)\rho_i}$$

Sendo:

h_{aim}: herdabilidade média;

h; : herdabilidade individual

Para cada característica, o número mínimo de medições necessárias para predizer o valor real dos genótipos, com base em um coeficiente de determinação (R²) pré-estabelecido (0,70, 0,80 e 0,90), foi calculado pela expressão:

$$\eta_{\rm m} = \frac{{\rm R}^2 (1 - \rho_{\rm i})}{(1 - {\rm R}^2) \rho_{\rm i}}$$

 η_m : número de medições;

R²: coeficiente de determinação;

ρ_i: coeficiente de repetibilidade

3.6. Índice de seleção

Na seleção de clones, visando o melhoramento genético e ganho para vários caracteres simultaneamente, nos períodos de águas e seca, foi adotado o seguinte índice:

$$I = \sum_{i=1}^{6} vg_i x peso_i x (1/\sigma_{gi})$$
 em que:

vg_i:valor genotípico do clone para o caráter i;

peso; : importância proporcional do caráter i;

 σ_{gi} : desvio padrão genotípico estimado para o caráter i (para padronização da unidade de medição).

Os pesos dos caracteres foram distribuídos de acordo com sua importância econômica nos períodos das águas (80%) e secas (20%), sendo adotados então, os seguintes pesos:

Caráter	MSF-A	MSF-S	F(%)-A	F(%)-S	REB-A	REB-S
Pesos(%)	48	12	20	5	12	3

MSF-A: matéria seca foliar nas águas; MSF-S: matéria seca foliar nas secas; F(%)-A: porcentagem de folhas nas águas; F(%)-S: porcentagem de folhas nas secas REB-A: rebrota nas águas e REB-S: rebrota nas secas.

Os clones foram ordenados com base no índice, para fins de seleção.

4. RESULTADOS E DISCUSSÃO

4.1. Parâmetros genéticos para os períodos das águas e seca

Segundo Resende (2002a), os valores de h_g^2 podem ser classificados de baixos a moderados (0,15< h_g^2 <0,50) a altos (h_g^2 \ge 0,50). Os coeficientes de herdabilidade no sentido amplo e repetibilidade variaram amplamente de acordo com o campo avaliado e com a característica estudada. Para os caracteres vigor e rebrota os valores de herdabilidade foram moderados, exceto para o caráter rebrota avaliados no campo três, cujo valor foi de baixa magnitude (Tabela 04).

Tabela 04. Parâmetros de herdabilidade (hg²), repetibilidade (r) e média geral estimados para os caracteres vigor, rebrota, matéria seca total (MST), F(%), MSF e MSV avaliados no período das águas, em genótipos de *Brachiaria brizantha* em quatro campos experimentais

Compos	Darâmatras		Caracteres						
Campos	Parâmetros	VIGOR	REB ¹	MST ²	F(%) ³	MSF ⁴	MSV ⁵		
	h_{g}^{2}	0,21±0,02	0,26±0,02	0,11±0,01	0,40±0,02	0,40±0,02	0,12±0,02		
1	r	$0,28\pm0,02$	$0,31\pm0,02$	$0,33\pm0,02$	$0,40\pm0,02$	$0,41\pm0,02$	$0,34\pm0,02$		
	Médias	2,24	3,26	1726,15	49,88	490,36	1628,80		
	h_g^2	0,23±0,03	0,23±0,03	0,17±0,02	0,46±0,04	0,28±0,03	$0,33\pm0,04$		
2	r	$0,39\pm0,04$	$0,37\pm0,03$	$0,41\pm0,04$	$0,47\pm0,04$	$0,46\pm0,04$	$0,46\pm0,04$		
	Médias	2,65	2,52	1018,37	50,42	496,07	509,49		
	h_g^2	0,39±0,08	0,11±0,04	0,16±0,05	0,53±0,09	0,28±0,07	0,15±0,05		
3	r	$0,43\pm0,08$	$0,34\pm0,07$	$0,19\pm0,05$	$0,53\pm0,09$	$0,31\pm0,07$	$0,18\pm0,05$		
	Médias	1,97	2,75	1347,41	52,72	684,59	1253,67		
	$h_{\rm g}^2$	0,41±0,05	0,46±0,05	0,12±0,03	0,66±0,06	0,31±0,04	$0,14\pm0,04$		
4	r	$0,55\pm0,06$	$0,49\pm0,06$	$0,23\pm0,04$	$0,66\pm0,06$	$0,41\pm0,05$	$0,24\pm0,04$		
	Médias	1,91	2,86	907,38	54,18	479,25	867,29		

REB¹: rebrota; MST²: matéria seca total; F(%)³: porcentagem de folhas; MSF⁴: matéria seca foliar e MSV⁵: matéria seca verde.

Os valores encontrados para herdabilidade foram baixos a moderados (0,11 a 0,17) para o caráter MST. A estimativa dos valores de herdabilidade para F(%) foi de moderada a alta (0,40 a 0,66), já para repetibilidade para este caráter foram de alta magnitude (0,40 a 0,66). Para MSF os valores de herdabilidade foram considerados moderados, enquanto para o caráter MSV foram estimados baixos valores baixos de herdabilidade exceto para o campo dois que apresentou magnitude moderada (Tabela 04).

Nos campos dois e três os valores de herdabilidade e repetibilidade obtidos para vigor e MST foram maiores na seca (Tabela 05) do que nas águas (Tabela 04), indicando que esses caracteres se expressam com maior intensidade em condições de stress como ocorre no período das secas.

Tabela 05. Parâmetros de herdabilidade (h_g^2), repetibilidade (r) e média geral estimados para os caracteres vigor, rebrota, MST, F(%), MSF e MSV avaliados no período da seca, em genótipos de *Brachiaria brizantha* em quatro campos experimentais

Compos	Parâmetros	Caracteres						
Campos	rarametros	VIGOR	REB ¹	MST ²	$F(\%)^3$	MSF ⁴	MSV ⁵	
	$h_{\rm g}^2$	$0,22\pm0,04$	$0,23\pm0,04$	0,21±0,38	$0,43\pm0,05$	$0,28\pm0,04$	$0,23\pm0,04$	
1	r	$0,29\pm0,04$	$0,28\pm0,04$	$0,41\pm0,05$	$0,44\pm0,05$	$0,50\pm0,05$	$0,44\pm0,05$	
	Média	2,12	3,27	1807,72	54,83	941,68	1634,47	
	$h_{\rm g}^2$	0,39±0,07	0,26±0,06	0,33±0,07	0,40±0,07	0,37±0,07	0,38±0,07	
2	r	$0,43\pm0,08$	$0,41\pm0,07$	$0,44\pm0,08$	$0,41\pm0,08$	$0,48\pm0,08$	$0,47\pm0,08$	
	Média	2,63	3,15	1061,66	57,03	575,62	571,46	
	h_{g}^{2}	0,75±0,24	0,38±0,17	0,64±0,23	0,34±0,16	0,71±0,24	$0,67\pm0,23$	
3	r	$0,83\pm0,26$	$0,58\pm0,21$	$0,65\pm0,23$	$0,34\pm0,16$	$0,74\pm0,23$	$0,67\pm0,02$	
	Média	1,90	2,75	1869,47	53,73	978,70	1657,13	
4	$h_{\rm g}^2$	0,37±0,08	0,31±0,08	0,34±0,08	0,31±0,08	0,29±0,08	0,31±0,08	
	r	0,37±0,09	$0,31\pm0,08$	$0,34\pm0,08$	$0,31\pm0,08$	$0,29\pm0,08$	$0,31\pm0,08$	
	Média	2,40	2,30	1482,57	46,55	682,35	1264,90	

REB¹: rebrota; MST²: matéria seca total; F(%)³: porcentagem de folhas; MSF⁴: matéria seca foliar e MSV⁵: matéria seca verde.

Os valores de repetibilidade e herdabilidade foram similares para os caracteres MST e F(%) o que indica uma baixa influência do efeito ambiental permanente nestes caracteres, exceto para o caráter MST no campo um em que os valores de herdabilidade (0,21) e repetibilidade (0,41) não foram similares indicando existir maior efeito ambiental para esse caráter.

Utilizando metodologia analítica similar, Resende et al (2004) trabalharam com híbridos intraespecíficos de *Panicum maximum* e encontraram valores de herdabilidades individuais no sentido amplo variando de 0,14 a 0,20 e as repetibilidades individuais de 0,15 a 0,21 consideradas de baixa magnitude para os caracteres rendimento de matéria verde, rendimento de matéria seca total e de folhas e porcentagem de folhas em cinco cortes anuais durante três anos.

4.2. Parâmetros genéticos anuais

As estimativas dos parâmetros genéticos, com base em todos os cortes de avaliação, para os 218 genótipos de *B. brizantha* para os caracteres vigor, rebrota, MST, F(%), MSF e MSV encontram-se na Tabela 06. Para todas as características avaliadas os melhores resultados obtidos para herdabilidade foram para o caráter F(%).

As estimativas de variação genética são muito importantes num programa de melhoramento, pois servem de base para estimar os parâmetros genéticos e o modo de herança dos caracteres. Indicam ainda o grau de facilidade ou dificuldade para obtenção de avanços com seleção e na definição dos melhores métodos de melhoramento a serem adotados.

Tabela 06. Variância genotípica (Vg), variância ambiental (Ve), variância fenotípica (Vf), herdabilidade (h_g^2), repetibilidade (r) e média geral para todos os caracteres avaliados para todos os campos experimentais em todos os cortes de avaliação

<u> </u>	D	Caracteres							
Campos	Parâmetros	VIGOR	REB ¹	MST ²	F(%) ³	MSF ⁴	MSV ⁵		
	Vg	0,066	0,251	82240,45	42,67	39031,35	76001,60		
	Ve	0,332	0,753	470369,60	79,51	116556,63	409961,20		
	Vf	0,433	1,167	694968,72	122,35	198165,55	615276,64		
1	h_{g}^{2}	0,15±0,02	0,21±0,02	0,12±0,02	0,35±0,03	0,20±0,02	0,12±0,01		
	r	0,24±0,03	$0,35\pm0,03$	$0,32\pm0,03$	$0,35\pm0,03$	$0,41\pm0,03$	$0,33\pm0,03$		
	Média	2,23	2,50	1739,85	50,84	864,25	1623,46		
	Vg	0,13	0,27	60228,25	73,07	27132,75	50800,41		
	Ve	0,35	1,40	205578,15	125,44	69069,81	103091,67		
2	Vf	0,54	1,81	332963,43	200,35	114479,50	173657,93		
2	h_{g}^{2}	0,24±0,02	0,15±0,02	$0,18\pm0,02$	$0,37\pm0,03$	$0,24\pm0,02$	0,29±0,03		
	r	0,36±0,03	$0,23\pm0,03$	$0,38\pm0,03$	$0,37\pm0,03$	$0,40\pm0,03$	$0,40\pm0,03$		
	Média	2,62	2,50	970,46	50,90	521,44	533,06		
	Vg	0,24	0,21	223710,79	101,23	78339,85	197691,70		
	Ve	0,56	1,06	926776,78	116,43	209973,12	788418,32		
2	Vf	0,82	1,65	115592,25	217,92	291877,23	989069,70		
3	h_{g}^{2}	0,30±0,06	0,13±0,04	$0,20\pm0,05$	0,43±0,08	$0,27\pm0,06$	0,20±0,05		
	r	0,31±0,06	$0,36\pm0,06$	$0,20\pm0,05$	$0,46\pm0,08$	$0,28\pm0,06$	$0,20\pm0,05$		
	Média	2,00	2,80	1617,04	52,00	796,06	1473,45		
	Vg	0,12	0,32	29033,38	107,63	16205,13	25275,75		
	Ve	0,27	0,45	248575,35	100,98	67216,65	231460,00		
4	Vf	0,44	0,80	288205,94	208,89	86619,32	264312,39		
4	h_{g}^2	0,28±0,04	0,41±0,05	0,11±0,02	0,51±0,05	0,19±0,03	0,10±0,02		
	r	0,38±0,04	$0,44\pm0,05$	$0,14\pm0,02$	$0,51\pm0,05$	$0,22\pm0,03$	0,12±0,02		
	Média	2,04	2,73	1047,86	52,27	537,40	963,72		

REB¹: rebrota; MST²: matéria seca total; F(%)³: porcentagem de folhas; MSF⁴: matéria seca foliar; MSV⁵: matéria seca verde.

Os valores da herdabilidade no sentido amplo e do coeficiente de repetibilidade ou correlação fenotípica intraclasse, foram bastante similares para o caráter rebrota no campo quatro, indicando uma baixo efeito do ambiente permanente neste ensaio, contrariamente ao evidenciado para os outros ambientes.

A herdabilidade para MST foi baixa a moderada (0,11 a 0,20) para todos os campos, o que não ocorreu com a F(%) que apresentou valores de moderados a altos (0,35 a 0,51). Para MSF e MSV os valores da herdabilidade foram baixos a moderados (0,12 a 0,27).

Altos valores de herdabilidade para caracteres agronômicos também foram encontrados por Resende et al, (2002) avaliando matéria seca total, MSF, MSV e F(%) encontraram valores de herdabilidade de alta magnitude (0,79 a 0,65) em ensaio envolvendo 41 híbridos de *Brachiaria*, sendo este parâmetro empregado na predição de valores genotípicos servindo para a seleção de genótipos superiores.

Resende et al (2004) encontraram valores de herdabilidade no sentido restrito e no sentido amplo para matéria seca verde e matéria seca de 0,02 a 0,10 e 0,20 a 0,13, respectivamente. Neste mesmo estudo os valores de repetibilidade para porcentagem de folhas foram de 0,21 e para matéria seca foliar de 0,13 apresentando baixa magnitude para todos os caracteres avaliados em progênies de irmãos germanos em *P. maximum*.

4.3. Estimativas de correlações genéticas entre os caracteres

As estimativas das correlações genéticas entre as variáveis analisadas, em seus respectivos campos experimentais, são apresentadas na Tabela 07. Verifica-se a existência de alta correlação genética entre as variáveis MSF - MST, MSV - MST e MSV - MSF e F(%) e MSF para os campos experimentais 1 e 4. Para os campos

experimentais 2 e 3 houve alta correlação genética para as características MSF – MST, MSV – MST e MSV – MSF.

Tabela 07. Estimativas de correlação genética para os caracteres avaliados nos quatro campos experimentais

Caráter/Campo1	Vigor	Rebrota	MST	F(%)	MSF	MSV
Vigor	1,000	0,5692	0,6915*	0,1977	0,6315*	0,6897*
Rebrota		1,000	0,3598	0,5622	0,5491	0,3816
MST		ŕ	1,000	0,2211	0,8852*	0,9962*
F(%)				1,000	0,6338*	0,2615
MSF					1,000	0,9025*
MSV						1,000
Caráter/Campo2						
Vigor	1,00	0,3030	0,7282*	0,1621	0,7010*	0,6063
Rebrota		1,00	0,0278	0,7021*	0,3569	0,2647
MST			1,00	-0,0791	0,8726*	0,7123*
F(%)				1,000	0,3776	0,2093
MSF					1,00	0,7515*
MSV						1,00
Caráter/Campo3						
Vigor	1,00	0,3010	0,5676	0,4325	0,7343*	0,5868
Rebrota		1,00	-0,2629	0,6185	0,0254	-0,3003
MST			1,00	-0,1690	0,8321*	0,9826*
F(%)				1,00	0,3737	-0,1445
MSF					1,00	0,8532*
MSV						1,00
Caráter/Campo4						
Vigor	1,00	0,4593	0,6786*	0,3242	0,7274*	0,7380*
Rebrota		1,00	-0,0529	0,7775	0,5659	-0,0233
MST			1,00	-0,1461	0,6252*	0,9886*
F(%)				1,00	0,6571*	-0,0963
MSF					1,00	0,6496*
MSV						1,00

^{*} Características altamente correlacionadas

Em presença de correlações genéticas de alta magnitude, a alteração em um caráter, via seleção, promove alterações significativas em outros caracteres correlacionados. Estas alterações são denominadas respostas correlacionadas ou ganho genético indireto (RESENDE, 2002a).

Resultados semelhantes foram encontrados por Valle et al (2004) em trabalho realizado com híbridos de *Brachiaria* spp, observaram alta correlação genética entre as variáveis MST e MSF, indicando que ao selecionar um material para qualquer uma das

variáveis correlacionadas promoverá automaticamente a obtenção de ganho com seleção para a outra variável.

Também foram encontradas altas correlações genéticas entre vigor e MST, MSF e MSV para a maioria dos campos avaliados, indicando esse caráter como um bom parâmetro de seleção, que por ser avaliado por meio de notas facilita o trabalho de avaliação diminuindo o tempo gasto com outras avaliações mais onerosas, sendo que ao selecionar os materiais para o caráter vigor estaríamos selecionando para os caracteres correlacionados a ele.

4.4. Determinação do número medições na avaliação de genótipos de B. brizantha

Para o caráter MSF quando avaliado com 12 medições, pode-se predizer um aumento nos valores de herdabilidade e repetibilidade variando de 15% a 22% e 8% a 15% respectivamente para os campos avaliados (Tabela 8). Já os melhores valores seriam obtidos pelo caráter rebrota chegando a 39% de aumento para estimativa de herdabilidade no período das águas (Tabela 08) e até 22% no período da seca (Tabela 9).

A realização de 18 medições não se justificaria por não apresentar aumento significativo nos valores de herdabilidade e repetibilidade para os caracteres avaliados, pois ocorreria incremento médio de apenas 5% (Tabelas 8 e 9).

Tabela 08. Estimativas dos coeficientes de herdabilidade (h_g²) e repetibilidade (ρ) para matéria seca foliar (MSF), porcentagem de folhas (F(%)) e rebrota (REB) para 6, 12 e 18 avaliações em genótipos de *Brachiaria brizantha* para os

quatro campos de avaliação no período das águas

Campo	Parâmetro		MSF	-		F(%)			REB	
Сипро	1 drameno	6	12	18	6	12	18	6	12	18
1	$h_{\rm g}^2$	0.64	0.78	0.84	0.80	0.89	0.92	0.51	0.68	0.76
1	r	0.83	0.91	0.94	0.81	0.89	0.93	0.70	0.82	0.88
2	$h_{\rm g}^2$	0.70	0.82	0.88	0.84	0.91	0.94	0.64	0.78	0.84
	r	0.84	0.91	0.94	0.85	0.92	0.94	0.78	0.88	0.91
3	h_{g}^{2}	0.70	0.82	0.88	0.87	0.93	0.95	0.43	0.60	0.69
	r	0.73	0.84	0.89	0.87	0.93	0.95	0.76	0.86	0.90
4	h_{g}^{2}	0.73	0.84	0.89	0.92	0.96	0.88	0.84	0.91	0.94
	r	0.81	0.89	0.93	0.92	0.96	0.97	0.85	0.92	0.95

Tabela 09. Estimativas dos coeficientes de herdabilidade (h_g^2) e repetibilidade (ρ) para matéria seca foliar (MSF), porcentagem de folhas (F(%)) e rebrota (REB) para 6, 12 e 18 avalições em genótipos de *Brachiaria brizantha* para os quatro campos de avaliação no período da seca

Parâmet **MSF** F(%) **REB** Campo 12 6 12 18 6 18 6 12 18 ro 0.70 0.82 0.88 0.82 0.90 0.93 0.63 0.77 0.84 h_{g}^{2} 1 0.95 0.83 0.93 r 0.86 0.92 0.90 0.70 0.82 0.88 h_g^2 0.78 0.88 0.91 0.80 0.89 0.92 0.68 0.81 0.86 2 0.85 0.92 0.94 0.81 0.89 0.93 0.81 0.89 0.93 r h_g^2 0.92 0.94 0.97 0.880.76 0.86 0.90 0.79 0.88 3 0.94 0.97 0.98 0.76 0.86 0.90 0.89 0.94 0.96 r h_g^2 0.71 0.83 0.73 0.84 0.89 0.73 0.84 0.89 0.88 4

0.73

0.89

0.73

0.84

0.84

0.89

0.71

r

0.83

0.93

Avaliando híbridos de *Panicum maximum*, Resende et al (2004) obtiveram um incremento de menos de 5% no parâmetro repetibilidade após três anos de avaliações e esse foi o critério para determinar o número máximo de anos de avaliação a ser adotado, sem comprometer o ganho por ciclo de seleção, para os materiais avaliados.

Embora trabalhando com diferentes espécies, Daher et al (2004) em estudo com dezessete clones de capim elefante (*Penninsetum purpureum*) em doze cortes de avaliação, observaram que a variável produção de matéria seca apresentou a menor estimativa de coeficiente de repetibilidade, com um valor aproximado de 0,37. Já neste trabalho os valores de repetibilidade são altos e significativos quando ocorre um aumento no número de medições de 6 para 12, tanto no período de águas como no de seca em todos os caracteres avaliados.

No mesmo trabalho Daher et al (2004), foram encontrados valores de coeficiente de determinação genotípica (R²) variando amplamente, desde 33,49% para produção de matéria seca até 84,34% para altura. Eles concluíram que devem ser realizadas, pelo menos, nove, cinco, três e duas medições considerando as características percentagem de matéria seca, altura, diâmetro do colmo e número de perfilhos, respectivamente, para predizer o valor real dos genótipos, com base no coeficiente de determinação preestabelecido de 80%.

Na Tabela 10 são apresentadas as estimativas do número de medições necessárias, com base em três coeficientes de determinação preestabelecidos, para predizer o valor dos genótipos para os caracteres MSF, F(%), REB e Vigor.

Tabela 10. Estimativa do número de medições para os caracteres matéria seca foliar (MSF), porcentagem de folhas (F(%)),rebrota (REB) e Vigor de acordo com o coeficiente de determinação (R²), em genótipos de *Brachiaria brizantha* para os quatro campos de avaliação

Campos	R^2 –) (CE		ater	
	11	MSF	F(%)	REB	Vigor
	0,7	3	4	4	7
1	0,8	6	7	7	13
	0,9	9	17	10	29
	0,7	4	4	8	4
2	0,8	6	7	13	7
	0,9	14	15	30	16
	0,7	6	3	4	5
3	0,8	10	5	7	9
	0,9	23	10	16	19
	0,7	8	2	4	4
4	0,8	14	4	6	7
	0,9	31	8	13	14

Com base nos resultados pode-se inferir que para obter um R² de 80%, o qual é bastante adequado em programas de melhoramento de plantas, para os caracteres rebrota MSF, F(%), REB e Vigor seriam necessários de 6 a 14 cortes de avaliação. Corroborando para um período de avaliações de menos de dois anos, o que implica na maior facilidade de coleta de dados a campo pela diminuição no número de avaliações e também na otimização do processo de seleção com a economia de tempo e de mão-de-obra para a coleta dos dados de produção.

Com base neste resultado não justificaria a realização de três anos de avaliação para realizar a seleção dos indivíduos superiores. Pode-se inferir que dois anos de avaliação são suficientes para se obter elevada acurácia na seleção para esses caracteres.

Shimoya et al (2002) trabalhando com 77 genótipos de capim elefante estimaram os coeficientes de repetibilidade para características de proteína bruta do

colmo e da folha, matéria seca foliar e do colmo, em quatro cortes e verificaram que o número de cortes foi suficiente para obter um coeficiente de determinação de 80% e o acréscimo de três cortes, tornaria possível obter predições com uma confiabilidade em torno de 90% para essas características, indicando que o coeficiente de determinação de 80% é suficiente para inferir sobre o número de avaliações necessárias para se obter os bons resultados para os programas de melhoramento.

4.5. Índice de seleção

Os materiais avaliados foram ordenados de acordo com o índice de seleção aditivo, onde foram considerados, simultaneamente, os caracteres: rebrota, F(%) e MSF, gerando uma variável adicional que resultou da ponderação dos caracteres por meio de coeficientes calculados com base nas herdabilidades e seus valores econômicos.

O ordenamento dos genótipos pertencentes ao campo um, após a utilização de um índice de seleção combinando, os valores genotípicos ponderados por coeficientes de importância relativa dos diferentes caracteres avaliados, estão apresentados na Tabela 11. Verifica-se que 16 genótipos foram superiores a testemunha representada neste campo pela cv. Marandu (30), sendo que o primeiro classificado foi 24% superior a cultivar comercial. Este resultado é indicativo da superioridade das características agronômicas de alguns genótipos em relação a cultivar comercial.

Tabela 11. Ordenamento dos 98 genótipos (B) pertencentes ao campo um com base em índice de seleção estabelecido pela importância relativa de cada caráter

Orde m	В	Índice									
1	72	7,33	26	176	5,53	51	56	5,30	76	64	4,93
2	132	7,15	27	103	5,53	52	65	5,25	77	148	4,90
3	138	7,06	28	68	5,50	53	152	5,21	78	145	4,89
4	166	6,66	29	69	5,50	54	168	5,20	79	118	4,88
5	144	6,65	30	142	5,45	55	136	5,20	80	164	4,85
6	140	6,53	31	137	5,43	56	127	5,19	81	122	4,80
7	106	6,37	32	51	5,43	57	38	5,19	82	126	4,78
8	61	6,37	33	70	5,42	58	90	5,19	83	293	4,77
9	3	6,31	34	66	5,42	59	91	5,16	84	156	4,74
10	163	6,27	35	55	5,40	60	151	5,13	85	159	4,72
11	89	6,22	36	59	5,39	61	86	5,12	86	32	4,71
12	77	6,19	37	37	5,38	62	146	5,12	87	171	4,70
13	313	6,18	38	135	5,36	63	74	5,12	89	167	4,68
14	139	6,08	39	182	5,36	64	183	5,09	90	34	4,67
15	291	6,01	40	102	5,35	65	54	5,07	91	63	4,66
16	73	6,00	41	67	5,34	66	108	5,07	92	160	4,65
17	30	5,90	42	78	5,33	67	107	5,06	93	153	4,65
18	104	5,83	43	158	5,33	68	121	5,05	94	157	4,59
19	119	5,80	44	39	5,33	69	109	5,04	95	120	4,54
20	105	5,79	45	76	5,33	70	134	5,04	96	155	4,36
21	141	5,77	46	53	5,32	71	169	5,04	97	60	4,18
22	79	5,74	47	113	5,32	72	80	5,02	98	92	3,99
23	112	5,55	48	131	5,31	73	28	5,00			
24	1	5,54	49	58	5,31	74	184	4,97			
25	52	5,54	50	62	5,30	75	83	4,94			

Sobrinho et al (2005), trabalhando na identificação de híbridos de capim elefante com maior potencial produtivo e com boa qualidade da forragem, utilizou o índice de seleção do somatório das classificações nas diferentes características avaliadas. Levando-se em conta apenas as características de produção, obteve como resultado nove materiais superiores às testemunhas, cv. Pioneiro e cv. Cameroon que se classificaram em 10° e 11° lugares, respectivamente.

Na Tabela 12 estão ordenados os genótipos pertencente ao campo dois, verificase que as testemunhas cv. Xaraés (178, ordem 4) e cv. Marandu (30, ordem 6) foram classificadas em 4° e 6° lugar respectivamente, sendo o genótipo 188 superior a Xaraés em 15% e à Marandu em 20%.

Tabela 12. Ordenamento dos 63 genótipos (B) pertencentes ao campo dois com base em índice de seleção estabelecido pela importância relativa de cada caráter

Orde m	В	Índice									
1	188	5,84	17	173	4,25	33	298	3,63	49	294	3,28
2	71	5,40	18	154	4,23	34	88	3,54	50	189	3,23
3	116	5,18	19	95	4,19	35	185	3,53	51	201	3,19
4	178	5,06	20	204	4,17	36	143	3,51	52	93	3,19
5	96	4,93	21	117	4,10	37	193	3,49	53	75	3,08
6	30	4,86	22	97	4,10	38	208	3,48	54	124	3,06
7	147	4,80	23	186	4,10	39	190	3,48	55	161	3,04
8	289	4,78	24	203	3,96	40	2	3,45	56	191	3,02
9	205	4,69	25	99	3,90	41	210	3,44	57	85	3,00
10	209	4,61	26	23	3,89	42	150	3,42	58	192	2,97
11	194	4,47	27	98	3,87	43	84	3,42	59	207	2,96
12	175	4,46	28	149	3,86	44	170	3,42	60	288	2,84
13	717	4,45	29	123	3,85	45	101	3,41	61	162	2,81
14	172	4,44	30	128	3,74	46	165	3,38	62	187	2,73
15	114	4,39	31	111	3,74	47	82	3,36	63	179	2,65
16	199	4,30	32	129	3,70	48	180	3,34			

No campo três o melhor resultado foi obtido pela cv. Xaraés (178), sendo 26% mais produtiva que a cv. Marandu (30) e 9% superior a segunda classificada (259), conforme apresentado na Tabela 13.

Tabela 13. Ordenamento dos 17 genótipos (B) pertencentes ao campo três com base em índice de seleção estabelecido pela importância relativa de cada caráter

Ordem	В	Índice	Ordem	В	Índice
1	178	5,48	10	267	3,74
2	259	5,03	11	222	3,72
3	30	4,34	12	275	3,28
4	246	4,23	13	229	3,15
5	261	4,18	14	247	3,01
6	271	4,07	15	235	2,97
7	266	4,01	16	262	2,96
8	256	3,91	17	234	2,79
9	219	3,77			

Cinco genótipos foram superiores a testemunha cv. Marandu (30) pelo índice de seleção aditivo, sendo o primeiro classificado superior em 21% (Tabela 14).

Tabela 14 Ordenamento dos 41 genótipos (B) pertencentes ao campo quatro com base em índice de seleção estabelecido pela importância relativa de cada caráter

Orde m	В	Índice									
1	252	5,78	12	166	4,20	22	272	3,68	32	232	3,22
2	213	5,40	13	270	4,02	23	250	3,61	33	264	3,22
3	296	5,16	14	255	4,00	24	254	3,54	34	236	3,20
4	276	5,04	15	9	4,00	25	268	3,45	35	240	3,10
5	22	5,00	16	260	3,98	26	231	3,36	36	228	3,09
6	30	4,79	17	224	3,92	27	212	3,35	37	230	3,08
7	251	4,64	18	258	3,90	28	216	3,31	38	226	3,01
8	263	4,54	19	214	3,90	29	241	3,28	39	295	2,94
9	245	4,43	20	221	3,88	30	218	3,27	40	217	2,76
10	242	4,35	21	290	3,78	31	237	3,25	41	239	2,44
11	225	4,30									

Pelo índice de seleção aditivo foi possível inferir sobre a superioridade dos genótipos em relação às cultivares comerciais e concluir que este método de seleção é interessante e valioso para que se obtenha a classificação do materiais candidatos às fases subsequentes de avaliação, dentro do programa de melhoramento.

4.6. Ordenamento dos genótipos avaliados

Na Tabela 15 é apresentado o ordenamento do conjunto de todos os genótipos classificados de acordo com o valor do efeito genético individual dos materiais. O ranking dos 218 genótipos avaliados em todos os campos se encontra no Anexo 6. Os melhores genótipos para o caráter acúmulo de matéria seca foliar nas águas foram 72, 132, 188 e a testemunha 178 (cv. Xaraés). O maior peso foi dado a este caráter por ser o material mais consumido pelos animais e o que mais influenciará na escolha de uma nova cultivar.

Nenhum genótipo foi superior a cv. Xaraés para o caráter MSF nas secas, entretanto 20 genótipos foram superiores a cv. Marandu. A cv. Xaraés quando avaliada (campos 2 e 3), foi o genótipo mais produtivo nas secas apresentando 30% de sua

produção nesse período (Valle et al, 2001a), o que pode justificar sua boa colocação neste ordenamento.

Tabela 15. Ordenamento dos 30 melhores genótipos e as testemunhas cv. Marandu (30) e cv. Xaraés (178) de *Brachiaria brizantha* baseado nos efeitos genotípicos preditos para cada característica agronômica avaliada nos períodos das águas (A) e seca (S)

	aguas (A) c sc		T (0 /)	F(0/) C	DED '	DED C
Ordem	MSF - A	MSF - S	F(%) - A	F(%) - S	REB - A	REB - S
1	72	178	252	172	252	71
2 3	132	132	242	252	213	213
	188	259	213	194	71	259
4	178	166	289	178	172	209
5	140	188	172	116	289	289
6	144	95	194	175	72	72
7	138	138	71	138	276	252
8	166	73	205	79	186	276
9	106	123	261	39	77	178
10	259	166	22	72	138	261
11	116	89	276	242	3	178
12	252	717	178	178	209	263
13	163	96	296	3	119	132
14	71	72	138	245	61	128
15	61	291	72	61	178	204
16	3	163	246	199	261	96
17	30	296	140	106	245	30
18	147	116	106	77	296	61
19	313	144	204	71	79	199
20	296	178	175	209	39	98
21	139	30	3	96	242	186
22	89	139	178	313	106	97
23	213	147	79	205	205	172
24	276	224	77	65	30	30
25	96	290	259	225	173	66
26	30	214	116	176	204	68
27	22	129	39	55	175	77
28	30	222	263	112	56	79
29	77	263	139	213	258	313
30	251	229	256	128	96	205

¹MSF – Matéria seca foliar. ²F(%) – Porcentagem de folhas. ³REB – rebrota.

Onze genótipos foram superiores à cv. Xaraés quanto ao caráter porcentagem de folhas nas águas e quatro foram melhores para porcentagem de folhas nas secas. Para rebrota a cv. Xaraés obteve a 15° posição para o período das águas e a 9° para o período das secas. Quanto à cv. Marandu, esta obteve a 25° e 17° colocação para o mesmo caráter nas águas e secas, respectivamente.

Como as testemunhas cv. Marandu (30) e Xaraés (178) estavam presentes em mais de um campo de avaliação ao agrupar todos os 218 genótipos essas cvs. aparecem mais de uma vez no ranking realizado para cada caráter avaliado.

O ordenamento dos genótipos permitiu classificar os materiais de acordo com os caracteres de maior importância econômica. Este método de seleção mostrou ser eficiente e prático para indicar materiais superiores a integrar fases subsequentes do melhoramento, como a avaliação conjunta dos melhores materiais em diferentes locais (ensaios regionais) e análise de valor nutritivo. Aliado aos estudos quanto à resistência a pragas e doenças, tolerância a estresse abióticos como alagamento, sombreamento e acidez do solo, estes poderão ser utilizados como genitores em programas de cruzamento visando melhorar a produtividade e incremento do ganho animal por área.

5. CONCLUSÕES

- Os caracteres rebrota e porcentagem de folhas apresentaram os maiores coeficientes de herdabilidade e repetibilidade entre todos os caracteres avaliados.
- 2. A alta correlação genética entre os caracteres de produção avaliados em genótipos de *B. brizantha* indica que o uso de um deles como critério de seleção pode promover ganhos concomitantes aos outros.
- 3. O período de avaliação de dois anos é suficiente para realizar seleção com elevada acurácia nos genótipos de *B. brizantha*.
- 4. O índice de seleção utilizado neste trabalho permitiu a identificação de genótipos superiores para multicaracterísticas de interesse no melhoramento dessa gramínea forrageira.

6. REFERÊNCIAS BIBLIOGRÁFICAS

ALLARD, R.W. **Princípios de melhoramento genético das plantas**. São Paulo: Edgar Blucer,1971,381p.

ASSIS, G.M.L. Análise discriminante e divergência genética em espécies de *Brachiaria*. Universidade Federal de Viçosa: Viçosa, 2001. 68p. Tese (Mestrado em Agronomia – Área de Concentração: Genética e Melhoramento de Plantas) – UFV, 2001.

CRUZ, C.D., REGAZZI, A.J. **Modelos biométricos aplicados ao melhoramento genético**. Viçosa: UFV, Imprensa Universitária, 1994, Cap. 3, p.73-101. DAHER, R.F., MALDONADO, H., PEREIRA, A.V., et al. Estimativas de parâmetros genéticos e de coeficientes de repetibilidade de caracteres forrageiros em clones de capim-elefante (*Pennisetum purpureum* Schum.). **Acta Scientiarum. Agronomy** Maringá,v.26,n.4,p.483-490,2004.

EUCLIDES, V.P.B. Avaliação de gramíneas do gênero *Brachiaria* em pastejo. Campo Grande: EMBRAPA GADO DE CORTE. 15p. (EMBRAPA. Macroprograma de Transição–ProduçãoAnimal.Subprojeto(06.2002.180.05).2002.

EUCLIDES, V.P.B, VALLE, C.B., MACEDO, M.C.M., OLIVEIRA, M.P. Evaluation of *Brachiaria brizantha* ecotypes under grazing in small plots. In: INTERNATIONAL GRASSLAND CONGRESS, 19., 2001, São Pedro, SP. Proceedings...São Pedro. FEALQ,2001.p.535-537.

ELSTON, R. C. A weight-free index for the purpose of ranking or selection with respect to several traits at a time. **Biometrics**, Alexandria,v. 19,n. 1,p. 85-97,1963. FALCONER, D.S.; MACKAY, T.F.C. **Introduction to quantitative genetics**. 4th ed. Harlow: Longman, 1996. 464p.

GARCIA, A.A.F. **Índice para seleção de cultivares.** Piracicaba, 1998, 112p.Tese (Doutorado) ESALQ/USP.

HUMPHREYS, M.O. Multitrait response to selection in *Lolium perenne* L. (perennial ryegrass populations). **Heredity**, v.74, n.5, p.510-517, 1995.

JANK, L., VALLE, C.B, et al. Opções de novas cultivares de gramíneas e leguminosas forrageiras tropicais para Minas Gerais. **Informe Agropecuário**, Belo Horizonte, v.26, n. 226, p. 26-35, 2005.

KELLER-GREIN, G., MAASS, B.L., HANSON, J. Variación natural en *Brachiaria* y bancos de germoplasma existentes. In: MILES, J.W.; MAASS, B.L.; VALLE, C.BL. (Eds). *Brachiaria*: biología, agronomía y mejoramento. 1 ed. Cali, Colombia: Centro Nacional de Agricultura Tropical; Campo Grande: Brasil: Embrapa Gado de Corte, 1998. p. 18-45.

LEMPP, B., VALLE, C.B., RESENDE, M.S.R., GOMES, R.A. Comparação de característica anatômicas e agronômicas entre genótipos de "Brachiaria". 41° REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA. Campo Grande-MS. CD-ROM, FORR 083, 2004.

MARCHIORO, V.S., CARVALHO, F. I. F. de, LORENCETTI, C.; BENIN, G.; SILVA, J.A. G.; KUREK, A.J.; HARTWIG, I. Herdabilidade e correlações para caracteres de panícula em populações segregantes de aveia. R. bras. Agrociência, v. 9, n. 4, p. 323-328, out-dez, 2003.

MILES, J.W., VALLE, C.B. Manipulación de la apomixis em el mejoramiento de *Brachiaria*. In: MILES, J.W., MAASS, B.L., VALLE, C.B. (Eds). *Brachiaria*: biología, agronomía y mejoramiento. 1 ed. Cali, Colômbia: Centro Nacional de Agricultura Tropical; Campo Grande: Brasil: Embrapa Gado de Corte, 1998. p.181-195.

NUNES, S.G., BOOK, A., PENTEADO, M.I.O., GOMES, D.T. *Brachiaria brizantha* **cv. Marandu**. Campo Grande: Embrapa-CNPGC, 1984. 31p.

PADILHA, N.C.C., OLIVEIRA, M.S.P., MOTA, M.G.C. Estimativa da repetibilidade em caracteres morfolólicos e de procução de palmito em pupunheira (*Bactris gasipaes* Kunth).**R. Árvore**, Viçosa-MG, v.27, n.4, p.435-442, 2003

PEREIRA, A.V., VALLE, C.B.DO, FERREIRA, R.DE.P., MILES, J.W. Melhoramento de forrageiras tropicais. In: **Recursos Genéticos & Melhoramento - Plantas**. Nass, L.L., Valois, A.C.C., Melo, I.S de, Inglis-Valadares, M.C., (eds). Fundação MT, Rondonópolis. Capítulo 18. pp. 549-601. 2001.

RAMALHO, M.A.P., SANTOS, J.B., ZIMMERMANN, M.J.O. Genética quantitativa em plantas autógamas. Goiânia: Editora da UFG, 1993. 271p.

RENVOIZE, S.A., CLAYTON, W.D., KABUYE, C.H.S. Morfologia, taxonomia y distribuición natural de *Brachiaria* (Trin.) Griseb. In: MILES, J.W., MAASS, B.L., VALLE, C.B. (Eds). *Brachiaria*: biología, agronomía y mejoramiento. 1 ed. Cali, Colômbia: Centro Nacional de Agricultura Tropical; Campo Grande: Brasil: Embrapa Gado de Corte, 1998. p.1-17.

RESENDE, M. D. V. de. **Genética biométrica e estatística no melhoramento de plantas perenes**. Brasília, DF: Embrapa Informação Tecnológica, 2002a. 975p.

RESENDE, M. D. V. de. **Software SELEGEN – REML/BLUP**. Colombo: Embrapa Florestas, 2002b. 65 p. (Embrapa Florestas. Documentos, 77).

RESENDE, M.D.V.; STURION, J.A.; MENDES, S. Genética e melhoramento de ervamate (*Ilex paraguariensis* St. Hill). Colombo: EMBRAPA-CNPF, 1995. 33p. (EMBRAPA-CNPF. Documentos, 25).

RESENDE, R.M.S. **Avaliação genética de populações e progênies de erva-mate** (*Ilex paraguariensis* **Saint Hilaire**). Universidade Federal do Paraná. Curitiba, 2001. 124p. Tese (Doutorado em Genética). Curitiba – 2001.

RESENDE, R.M.S., JANK, L., VALLE, C.B., BONATO, A.L.V. Biometrical analysis and selection of tetraploid progenies of *Panicum maximum* using mixed models methods. **Pesq. agropec. bras**., Brasília, v.39, n.4, p.335-341, abr. 2004.

RESENDE, R.M.S., VALLE, C.B., BONATO, A.L.V. Estimação de parâmetros genéticos e predição de valores fenotípicos de cruzamentos interespecíficos em *Brachiaria*. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 39., **Anais...**2002. Recife: SBZ, 2002. 1CD-ROM – Forragicultura.

RESENDE, M.D. Métodos estatísticos ótimos na análise de experimentos de campo no melhoramento de plantas. In: 11° SIMPÓSIO DE ESTATÍSTICA APLICADA A EXPERIMENTAÇÃO AGRONOMICA, **Anais...** Londrina, 2005. CD-ROM.

ROSSMANN, H. Estimativas de parâmetros genéticos e fenotípicos de uma população de soja avaliada em quatro anos. ESALQ: Piracicaba, 2001. 80p. Tese (Mestrado em Agronomia – Área de Concentração: Genética e Melhoramento de Plantas).

SANTOS, V.S.da. **Seleção de pré-cultivares de soja baseados em índices.** ESALQ/USP. Piracicaba, 2005. 104p. Tese (Doutorado – Área de Concentração: Genética e Melhoramento de Plantas), 2005.

SAVIDAN, Y.H..Evolução em gramíneas tropicais com especial referência a apomixia. In: TÓPICOS DE CITOGENÉTICA E EVOLUÇÃO DE PLANTAS, 1984. Piracicaba, **Anais...**Ribeirão Preto: SBG, 1985. p 37-50.

SHIMOYA, A., PEREIRA, A.V., FERREIRA, R.P., CRUZ, C.D., CARNEIRO, P.C.S. Repetibilidade de características forrageiras do capim elefante. **Scientia Agrícola**, v.59, n. 2, p. 227-234, abr/jun 2002.

SOBRINHO, F.S., PEREIRA, A.V., LEDO, F.J.S. Avaliação agronômica de híbridos interespecíficos entre capim-elefante e milheto. **Pesq. agropec. bras**., Brasília, v.40, n.9, p.873-880, set. 2005.

SMITH, H.F. A discriminant function for plant selection. **Annals of Eugenics**, Cambridge, v.7, p. 240-250, 1936.

VALLE, C.B.do. Coleção de germoplasma de espécies de Brachiaria no CIAT: estudos básicos visando ao melhoramento genético. Campo Grande: EMBRAPA-CNPGC, 1990. 33p. (EMBRAPA-CNPGC. Documentos,46).

VALLE, C.B.; SOUZA, F.H.D. Construindo novas cultivares de gramíneas forrageiras para os cerrados brasileiros. In: REUNIÃO DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 32, Brasília, DF. **Anais...**Brasília:SBZ, 1995.p.3-7.

VALLE, C.B.; SOUZA, F.H.D. O processo de desenvolvimento de novas cultivares de gramíneas forrageiras na Embrapa Gado de Corte. In: CURSO DE PASTAGENS, 1997, Campo Grande. Palestras apresentadas. Campo Grande: EMBRAPA-CNPGC, 1997. VALLE, C.B. DO. Genetic resources for tropical areas: achievements and perspectives. In: INTERNATIONAL GRASSLAND CONGRESS, 19., Anais... 2001, São Pedro: FEALQ. 2001.1CD-ROM. Theme-12. Forage Breeding and Genetics. Plenary paper. VALLE, C.B., EUCLIDES, V.P.B., MACEDO, M.C.M. Características de plantas forrageiras do gênero *Brachiaria*. In: SIMPÓSIO SOBRE MANEJO DA PASTAGEM: A PLANTA FORRAGEIRA NO SISTEMA DE PRODUÇÃO, 17., 2000. Piracicaba. Anais... Editado por Aristeu Mendes Peixoto, Carlos Guilherme Silveira Pedreira, José

Carlos de Moura, Vidal Pedroso de Faria. Piracicaba: FEALQ, 2001a. p. 65-108.

VALLE, C.B.; PEREIRA, A.V.; JANK, L. Melhoramento de forrageiras tropicais. In: CONGRESSO BRASILEIRO DE MELHORAMENTO DE PLANTAS, 1., 2001, Goiânia. Anais... Goiânia: Embrapa-CNPAF; Universidade Federal de Goiás; Agência Rural, 2001b. 5p. 1 CD-ROM. Seção palestras - melhoramento de forrageiras tropicais. VALLE, C.B., RESENDE, R.M.S., JANK, L., CALIXTO, S. Seleção de híbridos de *Brachiaria* utilizando-se índices relativos combinados de caracteres agronômicos 1. 41° REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA. Campo Grande-MS. CD-ROM, FORR 083, 2004.

WHITEMAN, P.H.; DEAN, C.A.; DORAN, J.C.; CAMERON, J.N. Genetic parameters and selection strategies for *Eucalypthus nitens* (Dean and Maiden) in Victoria. **Silvae Genetic**, v.41, n.2, p.77-81, 1992.

Anexo 1 – Identificação (ID) dos 218 genótipos de *Brachiaria brizantha* avaliados na Embrapa Gado de Corte seus respectivos locais de origem e suborigem, latitude, longitude e altitude (m)

ID	Origem	Suborigem	Latitude	Longitude	Altitude
B001	KENYA	?	?	?	?
B002	?	?	?	?	?
B003	?	?	?	?	?
B009	ZAIRE	?	?	?	?
B022	?	?	?	?	?
B023	?	?	?	?	?
B028	?	?	?	?	?
B030	?	?	?	?	?
B032	KENYA	RIFT VALEY	?	35° 0"E	1970
B034	KENYA	EASTERN	?	37°36"E	1213
B037	KENYA	RIFT VALEY	?	?	2130
B038	KENYA	RIFT VALEY	?	34°49"E	1606
B039	MALAWY	SOUTHERN	19° 1"S	34°52"E	758
B051	ETIOPIA	WELEGA	9° 16"N	35° 40"E	1950
B052	ETIOPIA	ILUBABOR	8° 30"N	36° 22"E	1990
B053	ETIOPIA	SIDAMO	5° 49"N	39° 16"E	1960
B054	ETIOPIA	SIDAMO	5° 52"N	39° 6"E	1690
B055	ETIOPIA	GAMO GOFA	6° 13"N	37° 32"E	2080
B056	ETIOPIA	SIDAMO	6° 37"N	37° 28"E	1420
B058	ETIOPIA	GAMO GOFA	6° 16"N	36° 49"E	1990
B059	ETIOPIA	SHOA	8° 10"N	37° 49"E	1990
B060	ETIOPIA	HARERGE	9° 26"N	41° 49"E	2120
B061	ETIOPIA	KAFFA	7° 28"N	36° 25"E	1520
B062	ETIOPIA	KAFFA	7° 32"N	38° 37"E	1940
B063	ETIOPIA	KAFFA	7° 37N	36° 46"E	1870
B064	ETIOPIA	KAFFA	7° 54"N	36° 22"E	1750
B065	ETIOPIA	ILUBABOR	7° 58"N	36° 28"E	1750
B066	ETIOPIA	ILUBABOR	8° 5"N	36° 28"E	2100
B067	ETIOPIA	ILUBABOR	8° 22"N	36° 25"E	2010
B068	ETIOPIA	ILUBABOR	8° 25"N	36° 17"E	1990
B069	ETIOPIA	ILUBABOR	8° 22"N	36° 10"E	2030
B070	ETIOPIA	ILUBABOR	8° 9"N	35° 25"E	1810
B071	ETIOPIA	ILUBABOR	8° 19"N	35° 02"E	1510
B072	ETIOPIA	WELEGA	8° 43"N	35° 0"E	1760
B073	ETIOPIA	WELEGA	9° 13"N	35° 52"E	1540
B074	ETIOPIA	WELEGA	9° 4"N	35° 28"E	1990
B075	ETIOPIA	GOJJAN	10° 59"N	36° 28"E	1690
B076	ETIOPIA	GONDER	12° 34"N	37° 25"E	2180
B077	ETIOPIA	GONDER	12° 31"N	37° 6"E	2050
B078	ETIOPIA	GONDER	12° 03"N	37° 1"E	2080
B079	ETIOPIA	GONDER	12° 31"N	36° 57"E	1820
B080	KENYA	BUNGOMA	?	34° 40"E	1660
B082	KENYA	BUNGOMA	?	34° 31"E	1560
B083	KENYA	SIAYA	?	34° 25"E	1360

B084	KENYA	SIAYA	?	34° 66"E	1360
B085	KENYA	SOUTH NYANZA	?	4° 31"E	1440
B086	KENYA	NANDI	?	35° 12"E	1490
B088	KENYA	KWALE	4° 12"S	39° 25"E	365
B089	KENYA	NAKURU	?	36° 1"E	1850
B090	KENYA	TRANS NZOIA	1° 4" N	34° 49"E	1870
B091	KENYA	TRANS NZOIA TRANS NZOIA	1° 3"N	34° 51"E	1890
B092	KENYA	TRANS NZOIA TRANS NZOIA	?	34° 58"E	1860
B093	KENYA	KWALE	4° 16"S	39° 25"E	400
B095	ZIMBABWE	KADOMA	18° 34"S	29° 49"E	1170
B096	ZIMBABWE	MUTASA	18° 31"S	32° 37"E	1570
B097	ZIMBABWE	UMTALI	18° 53'S	32° 34"E	1410
B098	ZIMBABWE	UMTALI	18° 42"S	32° 34"E	1270
B099	BURINDI	MAKAMBA	4°20"N	29° 36"E	840
B101	ETIOPIA	SHOA	8° 58"N	37° 19"E	1900
B102	ETIOPIA	SHOA	9° 11"N	37° 16"E	1820
B102	ETIOPIA	WELEGA	9° 4"N	36° 57"E	1770
B103	ETIOPIA	WELEGA	6° 3"N	36° 22"E	1900
B104	ETIOPIA	WELEGA	9° 4"N	36° 19"E	1500
B105	ETIOPIA	WELEGA	9° 1"N	36° 2"E	1400
B107	ETIOPIA	WELEGA	9° 25"N	35° 36"E	2000
B107	ETIOPIA	WELEGA	9° 28"N	35° 37"E	1910
B109	ETIOPIA	WELEGA	9° 33"N	35° 27"E	1990
B107	ETIOPIA	WELEGA	9° 45"N	35° 8"E	1780
B112	ETIOPIA	WELEGA	9° 49"N	35° 4"E	1800
B113	ETIOPIA	WELEGA	9° 37"N	35° 19"E	1900
B113	ETIOPIA	WELEGA	9° 1"N	35° 16"E	1770
B116	ETIOPIA	WELEGA	8° 40"N	36° 23"E	1740
B117	ETIOPIA	ILUBABOR	8° 35"N	36° 21"E	1570
B117	ETIOPIA	ILUBABOR	8° 34"N	36° 22"E	1990
B119	ETIOPIA	SIDAMO	6° 43"N	38° 22"E	1850
B120	ETIOPIA	SIDAMO	5° 37"N	39° 21"E	1710
B120	ETIOPIA	SIDAMO	5° 47"N	39° 16"E	1800
B121	ETIOPIA	SIDAMO	5° 13"N	38° 17"E	1610
B123	ETIOPIA	GAMO GOFA	6° 12"N	37° 34"E	1690
B123	ETIOPIA	GAMO GOFA	6° 13"N	37° 34"E	1690
B124	ETIOPIA	SIDAMO	6° 49"N	37° 34"E	1990
B120	ETIOPIA	GAMO GOFA	6° 31"N	37° 22"E	1490
B127	ETIOPIA	GAMO GOFA	6° 16"N	36° 51"E	1740
B129	ETIOPIA	GAMO GOFA	6° 57"N	37° 45"E	2050
B131	ETIOPIA	HARERGE	9° 13"N	42° 19"E	1620
B131	ETIOPIA	KAFFA	8° 11"N	37° 34"E	1450
B134	ETIOPIA	KAFFA	7° 57"N	37° 25"E	1760
B135	ETIOPIA	KAFFA	7° 22"N	36° 17"E	1770
B136	ETIOPIA	KAFFA	7° 42"N	36° 55"E	1840
B137	ETIOPIA	KAFFA	7° 49"N	36° 40"E	1670
B137	ETIOPIA	ILUBABOR	8° 19"N	35° 49"E	1620
B139	ETIOPIA	ILUBABOR	8° 19"N	35° 38"E	1610
D133	LIIOHA	ILUDADUK	0 17 IN	33 30 E	1010

	1				
B140	ETIOPIA	ILUBABOR	8° 11"N	35° 19"E	1610
B141	ETIOPIA	ILUBABOR	8° 15"N	35° 7"E	1720
B142	ETIOPIA	ILUBABOR	8° 19"N	35° 2"E	1510
B143	ETIOPIA	ILUBABOR	8° 24"N	34° 37"E	1220
B144	ETIOPIA	WELEGA	9° 3"N	34° 43"E	1500
B145	ETIOPIA	WELEGA	9° 3"N	35° 42"E	1720
B146	ETIOPIA	WELEGA	9° 19"N	35° 42"E	1720
B147	ETIOPIA	WELEGA	8° 55"N	35° 31"E	1640
B148	ETIOPIA	GOJJAN	11° 11"N	36° 19"E	1150
B149	ETIOPIA	GOJJAN	11° 31"N	37° 23"E	1850
B150	ETIOPIA	GONDER	11° 49"N	37° 36"E	1820
B151	ETIOPIA	GONDER	11° 55"N	37° 42"E	1820
B152	ETIOPIA	GONDER	12° 31"N	37° 25"E	2040
B153	ETIOPIA	GONDER	13° 15"N	36° 16"E	1850
B154	ETIOPIA	GONDER	12° 25"N	37° 19"E	1910
B155	ETIOPIA	GOJJAN	11° 9"N	37° 45"E	1800
B156	KENYA	TRANS NZOIA	1° 3"N	34° 55"E	1880
B157	KENYA	WEST POKOT	1° 18"N	35° 12"E	1780
B158	KENYA	BUNGOMA	?	34° 49"E	1750
B159	KENYA	KISUMU	?	34° 35"E	1490
B160	KENYA	KISUMU	?	34° 45'''E	1290
B161	KENYA	SOUTH NYANZA	?	34° 31"E	1390
B162	KENYA	KISII	?	34° 38"E	1570
B163	KENYA	KERICHO	?	35° 31"E	2100
B164	KENYA	KISUMU	?	35° 4"E	1260
B165	KENYA	KISUMU	?	34° 45"E	1210
B166	KENYA	NAIROBI	1° 16"S	36° 47"E	1600
B167	KENYA	KWALE	4° 19"S	39° 28"E	100
B168	KENYA	KWALE	4° 10"S	39° 28"E	280
B169	KENYA	NANDI	?	35° 2"E	1900
B170	KENYA	NAKURU	?	35° 49"E	1910
B171	KENYA	TRANS NZOIA	?	34° 28"E	1860
B172	ZIMBABWE	HARARE	17° 51"S	30° 45"E	1330
B173	ZIMBABWE	SHAMVA	17° 21"S	31° 31"E	1050
B175	ZIMBABWE	HWANGE	18° 43"S	26° 56"E	1030
B176	ZIMBABWE	BINDURA	17° 19"S	31° 23"E	1080
B178	BURUNDI	CIBITOKE	2° 52"S	29° 19"E	1510
B179	BURUNDI	RUVIGI	3° 36"S	30° 13"E	1280
B180	BURUNDI	RUTANA	3° 58"S	30° 8"E	1170
B182	RWANDA	KIGALI	2° 7"S	3° 6"E	1490
B183	RWANDA	KIBUNGO	2° 16"S	30° 46"E	1660
B184	?	?	?	?	?
B185	ETIOPIA	WELEGA	9° 4"N	35° 53"E	1890
B186	ETIOPIA	WELEGA	8° 48"N	35° 0"E	1710
B187	ETIOPIA	SIDAMO	7° 9"N	37° 57"E	2040
B188	ETIOPIA	GOJJAN	11° 4"N	36° 25"E	1490
B189	KENYA	TRANS NZOIA	1° 1"N	35° 1"E	1890
B190	KENYA	KISUMU	?	34° 51"E	1200
2170	1221,111	1210 01110	•	J. J. D	

B191	KENYA	KISUMU	?	35° 7"E	1290
B192	KENYA	TRANS NZOIA	?	35° 55"E	1640
B193	KENYA	UAZIN GISHU	?	35° 1"E	1700
B194	ZIMBABWE	MASVINGO	20° 40"S	31° 8"E	1180
B199	ZIMBABWE	MASVINGO	20° 6"S	31° 10"E	1150
B201	TANZANIA	TANGA	4° 32"S	38° 28"E	940
B203	TANZANIA	TRINGA	8° 41"S	34° 55"E	1620
B204	?	?	?	?	?
B205	ETIOPIA	WELEGA	9° 1"N	35° 28"E	1600
B207	ZIMBABWE	CHIMANIMANI	19° 49"S	32° 46"E	490
B208	BURUNDI	CANKUZO	3° 4"S	30° 40"E	1500
B209	ZIMBABWE	MARONDERA	18° 1"S	31° 49"E	1490
B210	ZIMBABWE	KWEKWE	18° 46"S	29° 48"E	1220
B212	ETIOPIA	WELEGA	8° 41"N	36° 27"E	1740
B213	ETIOPIA	BALE	7° 1"N	40° 19"E	1550
B214	ETIOPIA	SIDAMO	7° 0"N	38° 30"E	1700
B216	ETIOPIA	SIDAMO	5° 45"N	39° 19"E	1850
B217	ETIOPIA	SIDAMO	5° 31"N	38° 13"E	1920
B218	ETIOPIA	SIDAMO	7° 0"N	37° 52"E	1940
B219	ETIOPIA	SIDAMO	6° 47"N	37° 45"E	1950
B221	ETIOPIA	HARERGE	9° 22"N	42° 2"E	2000
B222	ETIOPIA	KAFFA	7° 43"N	37° 7"E	1740
B224	ETIOPIA	GOJJAN	11° 22"N	37° 1"E	1940
B225	ETIOPIA	GOJJAN	11° 31"N	37° 19"E	1840
B226	KENYA	KIAMBU	1° 7"S	37° 1"E	1550
B228	KENYA	UAZIN GISHU	?	35° 8"E	1920
B229	KENYA	KAKAMEGA	?	34° 46"E	1690
B230	KENYA	SOUTH NYANZA	?	34° 34"E	1525
B231	KENYA	MURANGA	?	37° 7"E	1440
B232	KENYA	KERICHO	?	35° 8"E	1600
B234	KENYA	NANDI	?	35° 12"E	1720
B235	KENYA	NAKURU	?	33° 58"E	1990
B236	KENYA	KWALE	4° 20"S	39° 27"E	150
B237	KENYA	TRANS NZOIA	1° 1"N	35° 0"E	1790
B239	KENYA	TRANS NZOIA	?	35° 55"E	1640
B240	KENYA	UAZIN GISHU	?	35° 2"N	1650
B241	KENYA	KIAMBU	?	37° 4"E	1400
B242	ZIMBABWE	GOROMONZI	17° 37"S	31° 8"E	1500
B245	ZIMBABWE	KARIBA	16° 19"S	29° 8"E	930
B246	ZIMBABWE	URUNGE	16° 52"S	29° 23"E	1080
B247	ZIMBABWE	INYANGA	18° 8"S	31° 49"E	1680
B250	ZIMBABWE	GOROMONZI	18° 6"S	31° 22"E	1530
B251	ZIMBABWE	HARARE	17° 37"S	30° 58"E	1490
B252	ZIMBABWE	CENTENARY	16° 31"S	31° 16"E	1200
B254	ZIMBABWE	INYANGA	18° 7"S	31° 49"E	1760
B255	ZIMBABWE	MUTASA	12° 40"S	32° 87"E	1370
B256	ZIMBABWE	CHIPINGE	20° 7"S	32° 37"E	1190
B258	ZIMBABWE	CHEGUTU	18° 4"S	30° 25"E	1240

D250	DUDUNDI	IZ A DI 171	20 (110	200 000	1.7.40
B259	BURUNDI	KARUZI	3° 6"S	30° 8"E	1640
B260	BURUNDI	KARUZI	3° 10"S	30° 10"E	1760
B261	BURUNDI	CANKUZO	3° 12"S	30° 33"E	1570
B262	BURUNDI	RUTANA	4° 1"S	30° 4"E	1220
B263	BURUNDI	KARUZI	3° 1"S	30° 10"E	1520
B264	BURUNDI	RUTANA	4° 1"S	30° 4"E	1200
B266	RWANDA	BYUMBA	1° 25"S	30° 34"E	1490
B267	RWANDA	GITARAMA	2° 10"S	29° 56"E	1450
B268	RWANDA	BUTARE	2° 16"S	29° 55"E	1410
B270	TANZANIA	MBEYA	8° 56"S	33° 10"E	1410
B271	TANZANIA	MBEYA	9° 16"S	33° 43"E	1300
B272	ZIMBABWE	?	?	?	?
B275	CAMERUN	ADAMAOUA	7° 20"N	13° 34"E	1150
B276	CAMERUN	ADAMAOUA	7° 19"N	13° 34"E	1150
B288	UGANDA	LANGO	2° 13"N	32° 51"E	1000
B289	ETIOPIA	SIDAMO	5° 52"N	39° 1"E	1800
B290	ETIOPIA	SIDAMO	5° 19"N	39° 36"E	1590
B291	KENYA	NAKURU	?	36° 1"E	1900
B293	RWANDA	KIBUNGO	1° 52"S	30° 45"E	1360
B294	ETIOPIA	KAFFA	7° 37"N	36° 46"E	1870
B295	BURUNDI	RUTANA	4° 1"S	30° 4"E	1200
B296	BURUNDI	GITEGA	3° 34"S	29° 52"E	1700
B298	?	?	?	?	?
BG2	?	?	?	?	?
ES1	?	?	?	?	?

Anexo 2 — Ordenamento dos 98 genótipos de *Brachiaria brizantha* do campo experimental um com base em índice de seleção estabelecido pela somatória da importância relativa de cada característica agronômica avaliada e ranking dos genótipos para cada caráter.

			Matéria	Matéria				
Ordom	Genótipo	Índice	seca	seca	% folhas	% folhas	Rebrota	Rebrota
Ordem	Genoupo	marce	foliar	foliar	chuvas	seca	chuvas	seca
			chuvas	seca				
1	72	7.33	72	132	138	138	72	138
2	132	7.15	132	166	72	79	77	79
3	138	7.06	140	138	140	39	138	39
4	166	6.66	144	73	106	72	61	72
5	144	6.65	138	89	3	3	3	3
6	140	6.53	166	72	79	61	39	61
7	106	6.37	106	291	77	106	30	106
8	61	6.37	163	163	39	77	119	77
9	3	6.31	61	144	139	313	56	313
10	163	6.27	3	139	313	65	313	65
11	89	6.22	313	51	135	176	68	176
12	77	6.19	139	131	61	55	54	55
13	313	6.18	89	137	68	112	291	112
14	139	6.08	77	52	118	119	163	119
15	291	6.01	104	65	70	66	79	66

16	73	6.00	105	107	176	78	89	78
17	30	5.90	73	104	112	54	67	54
18	104	5.83	141	313	291	70	142	70
19	119	5.80	291	59	102	132	146	132
20	105	5.79	30	1	146	113	144	113
21	141	5.77	176	62	141	76	166	76
22	79	5.74	119	66	113	58	105	58
23	112	5.55	69	141	132	157	139	157
24	1	5.54	68	109	166	62	141	62
25	52	5.54	103	182	152	144	103	144
26	176	5.53	52	53	163	152	76	152
27	103	5.53	79	105	89	140	140	140
28	68	5.50	135	61	30	151	151	151
29	69	5.50	1	83	184	73	132	73
30	142	5.45	112	55	78	30	58	30
31	137	5.43	102	37	66	137	168	137
32	51	5.43	55	136	144	127	64	127
33	70	5.42	37	70	55	67	1	67
34	66	5.42	182	145	142	135	69	135
35	55	5.40	51	142	76	28	73	28
36	59	5.39	59	58	137	139	66	139
37	37	5.38	70	140	103	108	53	108
38	135	5.36	142	121	157	1	164	1
39	182	5.36	183	158	65	126	112	126
40	102	5.35	38	112	28	182	184	182
41	67	5.34	131	38	182	166	118	166
42	78	5.33	137	135	151	34	158	34
43	158	5.33	62	113	119	52	90	52
44	39	5.33	127	74	59	158	113	158
45	76	5.33	78	169	155	141	78	141
46	53	5.32	152	183	105	51	37	51
47	113	5.32	91	108	67	136	28	136
48	131	5.31	56	90	73	53	74	53
49	58	5.31	158	30	1	109	104	109
50	62	5.30	136	126	109	102	70	102
51	56	5.30	113	134	108	291	152	291
52	65	5.25	53	80	293	59	102	59
53	152	5.21	76	78	58	74	169	74
54	168	5.20	86	148		168	137	
55	136	5.20	134	91	69	107		107
56	127		66	168	52	163	108	163
57	38	5.19	67		127	148		148
58	90	5.19	90	3	104	38		38
59	91	5.16	58	103	37	146	59	146
60	151	5.13	168	167	153	121	91	121
61	86		65	86	136	89		89
62	146	5.12	39	67	121	63	182	63
63	74	5.12	293	69	145	80	293	80
64	183	5.12	184	102	143	167	51	167
65	54	5.07	151	77	126	142	120	142
	J 4	3.07	131	/ /	120	144	120	142

66	108	5.07	74	151	38	104	176	104
67	107	5.06	118	64	62	134	65	134
68	121	5.05	80	156	74	131	55	131
69	109	5.04	169	146	107	37	107	37
70	134	5.04	109	176	92	90	80	90
71	169	5.04	83	32	156	156	171	156
72	80	5.02	121	164	183	145	145	145
73	28	5.00	28	106	53	86	34	86
74	184	4.97	108	171	51	69	32	69
75	83	4.94	146	34	64	56	160	56
76	64	4.93	107	79	54	164	167	164
77	148	4.90	122	63	90	91	148	91
78	145	4.89	148	153	168	64	62	64
79	118	4.88	64	122	56	155	109	155
80	164	4.85	153	152	131	60	122	60
81	122	4.80	145	160	134	171	156	171
82	126	4.78	159	159	164	159	159	159
83	293	4.77	156	157	169	122	86	122
84	156	4.74	54	119	91	103	136	103
85	159	4.72	164	127	63	118	63	118
86	32	4.71	32	54	80	183	38	183
87	171	4.70	160	184	86	169	106	169
89	167	4.68	126	120	122	120	83	120
90	34	4.67	171	28	120	160	126	160
91	63	4.66	63	60	159	83	157	83
92	160	4.65	167	155	60	105	155	105
93	153	4.65	34	56	34	184	153	184
94	157	4.59	157	68	158	153	60	153
95	120	4.54	120	39	167	68	183	68
96	155	4.36	155	293	160	32	134	32
97	60	4.18	92	92	83	92	92	92
98	92	3.99	60	118	32	293	135	293
_								

Anexo 3 — Ordenamento dos 63 genótipos de *Brachiaria brizantha* do campo experimental dois com base em índice de seleção estabelecido pela somatória da importância relativa de cada característica agronômica avaliada e ranking dos genótipos para cada caráter.

				<u> </u>				
			Matéria	Matéria				
Ordem	Genótipo	Índice	seca	seca	% folhas	% folhas	Rebrota	Rebrota
Oruciii	Genoupo	maicc	foliar	foliar	chuvas	seca	chuvas	seca
			chuvas	seca				
1	188	5.84	188	188	289	172	71	71
2	71	5.40	116	95	172	194	172	209
3	116	5.18	71	123	194	178	289	289
4	178	5.06	30	717	71	116	186	178
5	96	4.93	147	96	205	175	209	128
6	30	4.86	96	116	178	199	178	204
7	147	4.80	209	178	204	71	205	96
8	289	4.78	178	30	175	209	173	199

9 205 4.69 114 147 116 96 204 98 10 209 4.61 717 129 186 205 175 186 11 194 4.47 203 199 117 128 96 97 122 175 4.46 289 99 173 114 143 172 13 717 4.45 205 190 114 99 194 205 14 172 4.44 175 128 143 149 147 154 15 114 4.39 95 185 199 165 98 147 154 15 114 4.39 95 185 199 165 98 147 161 199 4.30 154 114 188 204 154 149 17 173 4.25 117 294 30 101 170 194 18 154 4.23 173 170 111 97 97 88 19 95 20 204 4.17 199 180 209 30 30 30 143 21 117 4.10 194 154 171 111 128 165 22 97 4.10 149 23 23 23 289 199 717 23 186 4.10 99 193 96 154 717 116 24 203 3.96 186 93 147 717 111 128 165 29 93 3.90 129 150 179 201 188 30 26 23 3.89 123 111 97 150 298 84 227 98 3.87 23 84 98 88 88 23 28 149 3.86 298 192 124 98 95 111 374 208 205 75 185 75 298 32 129 3.70 82 298 208 189 123 31 11 37 42 208 205 75 185 75 298 32 129 3.70 82 298 298 199 133 349 128 89 199 37 175 31 111 3.74 208 205 75 185 75 298 32 199 3.40 128 3.51 111 185 208 185 3.53 172 165 208 189 123 101 33 298 3.63 193 191 210 84 124 114 34 88 3.54 165 162 101 190 165 203 35 16 82 37 193 3.49 128 89 81 123 31 11 87 20 298 298 208 189 123 31 11 37 34 208 205 75 185 75 298 32 199 3.70 82 298 208 189 123 30 16 82 37 193 3.49 128 89 81 149 3.49 82 207 117 2 175 31 111 3.74 208 205 75 185 75 298 32 129 3.70 82 298 208 189 123 30 168 23 3 199 3.49 128 89 149 204 84 173 34 88 3.54 165 162 101 190 165 203 35 185 3.53 172 165 2 188 117 2 36 143 3.51 111 189 203 23 31 16 82 37 193 3.49 128 89 8149 294 84 173 38 208 3.48 84 117 150 162 294 84 173 38 208 3.48 84 117 150 162 294 38 123 101 34 42 114 41 41 41 41 41 41 41 41 41 41 41 41									
11 194 4,47 203 199 117 128 96 97 12 175 4.46 289 99 173 114 143 172 13 717 4.45 205 190 114 99 194 205 14 172 4.44 175 128 143 149 147 154 15 114 4.39 95 185 199 165 98 147 16 199 4.30 154 114 188 204 154 149 17 173 4.25 117 294 30 101 170 194 18 154 4.23 173 170 111 97 97 88 19 95 4.19 97 203 154 173 149 95 20 204 4.17 199 180 209 30 30 <t< td=""><td>9</td><td>205</td><td>4.69</td><td>114</td><td>147</td><td>116</td><td>96</td><td>204</td><td>98</td></t<>	9	205	4.69	114	147	116	96	204	98
12 175 4.46 289 99 173 114 143 172 13 717 4.45 205 190 114 99 194 205 14 172 4.44 175 128 143 149 147 154 15 114 4.39 95 185 199 165 98 147 16 199 4.30 154 114 188 204 154 149 17 173 4.25 117 294 30 101 170 194 18 154 4.23 173 170 111 97 97 88 19 95 4.19 97 203 154 173 149 95 20 204 4.17 199 180 209 30 30 143 21 117 4.10 194 154 717 111 128 165 </td <td>10</td> <td>209</td> <td>4.61</td> <td>717</td> <td>129</td> <td>186</td> <td>205</td> <td>175</td> <td>186</td>	10	209	4.61	717	129	186	205	175	186
13 717 4.45 205 190 114 99 194 205 14 172 4.44 175 128 143 149 147 154 15 114 4.39 95 185 199 165 98 147 16 199 4.30 154 114 188 204 154 149 17 173 4.25 117 294 30 101 170 194 18 154 4.23 173 170 111 97 97 88 19 95 4.19 97 203 154 173 149 95 20 204 4.17 199 180 209 30 30 143 21 117 4.10 194 154 717 111 128 165 22 97 4.10 149 23 23 289 199 <t< td=""><td>11</td><td>194</td><td>4.47</td><td>203</td><td>199</td><td>117</td><td>128</td><td>96</td><td>97</td></t<>	11	194	4.47	203	199	117	128	96	97
14 172 4.44 175 128 143 149 147 154 15 114 4.39 95 185 199 165 98 147 16 199 4.30 154 114 188 204 154 149 17 173 4.25 117 294 30 101 170 194 18 154 4.23 173 170 111 97 97 88 19 95 4.19 97 203 154 173 149 95 20 204 4.17 199 180 209 30 30 143 21 117 4.10 194 154 717 111 128 165 22 97 4.10 149 23 23 289 199 717 23 186 4.10 99 193 96 154 717 <td< td=""><td>12</td><td>175</td><td>4.46</td><td>289</td><td>99</td><td>173</td><td>114</td><td>143</td><td>172</td></td<>	12	175	4.46	289	99	173	114	143	172
15 114 4.39 95 185 199 165 98 147 16 199 4.30 154 114 188 204 154 149 17 173 4.25 117 294 30 101 170 194 18 154 4.23 173 170 111 97 97 88 19 95 4.19 97 203 154 173 149 95 20 204 4.17 199 180 209 30 30 143 21 117 4.10 194 154 717 111 128 165 22 97 4.10 149 23 23 289 199 717 23 186 4.10 99 193 96 154 717 116 24 203 3.96 186 93 147 717 114	13	717	4.45	205	190	114	99	194	205
15 114 4.39 95 185 199 165 98 147 16 199 4.30 154 114 188 204 154 149 17 173 4.25 117 294 30 101 170 194 18 154 4.23 173 170 111 97 97 88 19 95 4.19 97 203 154 173 149 95 20 204 4.17 199 180 209 30 30 143 21 117 4.10 194 154 717 111 128 165 22 97 4.10 149 23 23 289 199 717 23 186 4.10 99 193 96 154 717 116 24 203 3.96 186 93 147 717 114	14	172	4.44	175	128	143	149	147	154
16 199 4.30 154 114 188 204 154 149 17 173 4.25 117 294 30 101 170 194 18 154 4.23 173 170 111 97 97 88 19 95 4.19 97 203 154 173 149 95 20 204 4.17 199 180 209 30 30 143 21 117 4.10 194 154 717 111 128 165 22 97 4.10 149 23 23 289 199 717 23 186 4.10 99 193 96 154 717 114 99 24 203 3.96 186 93 147 717 114 99 25 99 3.90 129 150 179 201 1	15	114	4.39	95	185	199	165	98	147
17 173 4.25 117 294 30 101 170 194 18 154 4.23 173 170 111 97 97 88 19 95 4.19 97 203 154 173 149 95 20 204 4.17 199 180 209 30 30 143 21 117 4.10 194 154 717 111 128 165 22 97 4.10 149 23 23 289 199 717 23 186 4.10 99 193 96 154 717 116 24 203 3.96 186 93 147 717 114 99 25 99 3.90 129 150 179 201 188 30 26 23 3.88 123 1111 97 150 298 84									
18 154 4.23 173 170 111 97 97 88 19 95 4.19 97 203 154 173 149 95 20 204 4.17 199 180 209 30 30 143 21 117 4.10 194 154 717 111 128 165 22 97 4.10 149 23 23 289 199 717 23 186 4.10 99 193 96 154 717 114 99 25 99 3.90 129 150 179 201 188 30 26 23 3.89 123 111 97 150 298 84 27 98 3.87 23 84 98 88 88 23 28 149 3.86 298 192 124 98 95									
19 95 4.19 97 203 154 173 149 95 20 204 4.17 199 180 209 30 30 143 21 117 4.10 194 154 717 111 128 165 22 97 4.10 149 23 23 289 199 717 23 186 4.10 99 193 96 154 717 116 24 203 3.96 186 93 147 717 114 99 25 99 3.90 129 150 179 201 188 30 26 23 3.89 123 111 97 150 298 84 27 98 3.87 23 84 98 88 88 23 28 149 3.86 298 192 124 98 95 111									
20 204 4.17 199 180 209 30 30 143 21 117 4.10 194 154 717 111 128 165 22 97 4.10 149 23 23 289 199 717 23 186 4.10 99 193 96 154 717 116 24 203 3.96 186 93 147 717 114 99 25 99 3.90 129 150 179 201 188 30 26 23 3.89 123 111 97 150 298 84 27 98 3.87 23 84 98 88 88 23 28 149 3.86 298 192 124 98 95 111 29 123 3.85 204 97 88 210 23 175									
21 117 4.10 194 154 717 111 128 165 22 97 4.10 149 23 23 289 199 717 23 186 4.10 99 193 96 154 717 114 99 24 203 3.96 186 93 147 717 114 99 25 99 3.90 129 150 179 201 188 30 26 23 3.89 123 111 97 150 298 84 27 98 3.87 23 84 98 88 88 23 28 149 3.86 298 192 124 98 95 111 29 123 3.85 204 97 88 210 23 170 30 128 3.74 98 2 207 117 2									
22 97 4.10 149 23 23 289 199 717 23 186 4.10 99 193 96 154 717 116 24 203 3.96 186 93 147 717 114 99 25 99 3.90 129 150 179 201 188 30 26 23 3.89 123 111 97 150 298 84 27 98 3.87 23 84 98 88 88 82 23 28 149 3.86 298 192 124 98 95 111 29 123 3.85 204 97 88 210 23 170 30 128 3.74 98 2 207 117 2 175 31 111 3.74 208 205 75 185 75									
23 186 4.10 99 193 96 154 717 116 24 203 3.96 186 93 147 717 114 99 25 99 3.90 129 150 179 201 188 30 26 23 3.89 123 111 97 150 298 84 27 98 3.87 23 84 98 88 88 23 28 149 3.86 298 192 124 98 95 111 29 123 3.85 204 97 88 210 23 170 30 128 3.74 98 2 207 117 2 175 31 111 3.74 208 205 75 185 75 298 32 129 3.70 82 298 208 189 123 101									
24 203 3.96 186 93 147 717 114 99 25 99 3.90 129 150 179 201 188 30 26 23 3.89 123 111 97 150 298 84 27 98 3.87 23 84 98 88 88 23 28 149 3.86 298 192 124 98 95 111 29 123 3.85 204 97 88 210 23 170 30 128 3.74 98 2 207 117 2 175 31 111 3.74 98 2 207 117 2 175 31 111 3.74 98 2 207 117 2 175 31 121 3.61 161 101 190 165 203 34 <									
25 99 3.90 129 150 179 201 188 30 26 23 3.89 123 111 97 150 298 84 27 98 3.87 23 84 98 88 88 23 28 149 3.86 298 192 124 98 95 111 29 123 3.85 204 97 88 210 23 170 30 128 3.74 98 2 207 117 2 175 31 111 3.74 208 205 75 185 75 298 32 129 3.70 82 298 208 189 123 101 33 298 3.63 193 191 210 84 124 114 34 88 3.54 165 162 101 190 165 203									
26 23 3.89 123 111 97 150 298 84 27 98 3.87 23 84 98 88 88 23 28 149 3.86 298 192 124 98 95 111 29 123 3.85 204 97 88 210 23 170 30 128 3.74 98 2 207 117 2 175 31 111 3.74 208 205 75 185 75 298 32 129 3.70 82 298 208 189 123 101 33 298 3.63 193 191 210 84 124 114 34 88 3.54 165 162 101 190 165 203 35 185 3.53 172 165 2 188 117 2									
27 98 3.87 23 84 98 88 88 23 28 149 3.86 298 192 124 98 95 111 29 123 3.85 204 97 88 210 23 170 30 128 3.74 98 2 207 117 2 175 31 111 3.74 208 205 75 185 75 298 32 129 3.70 82 298 208 189 123 101 33 298 3.63 193 191 210 84 124 114 34 88 3.54 165 162 101 190 165 203 35 185 3.53 172 165 2 188 117 2 36 143 3.51 111 189 203 23 116 82									
28 149 3.86 298 192 124 98 95 111 29 123 3.85 204 97 88 210 23 170 30 128 3.74 98 2 207 117 2 175 31 111 3.74 208 205 75 185 75 298 32 129 3.70 82 298 208 189 123 101 33 298 3.63 193 191 210 84 124 114 34 88 3.54 165 162 101 190 165 203 35 185 3.53 172 165 2 188 117 2 36 143 3.51 111 189 203 23 116 82 37 193 3.49 128 44 173 180 193 161 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
29 123 3.85 204 97 88 210 23 170 30 128 3.74 98 2 207 117 2 175 31 111 3.74 208 205 75 185 75 298 32 129 3.70 82 298 208 189 123 101 33 298 3.63 193 191 210 84 124 114 34 88 3.54 165 162 101 190 165 203 35 185 3.53 172 165 2 188 117 2 36 143 3.51 111 189 203 23 116 82 37 193 3.49 128 98 149 294 84 173 38 208 3.48 84 117 150 162 294 123 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
30 128 3.74 98 2 207 117 2 175 31 111 3.74 208 205 75 185 75 298 32 129 3.70 82 298 208 189 123 101 33 298 3.63 193 191 210 84 124 114 34 88 3.54 165 162 101 190 165 203 35 185 3.53 172 165 2 188 117 2 36 143 3.51 111 189 203 23 116 82 37 193 3.49 128 98 149 294 84 173 38 208 3.48 84 117 150 162 294 123 39 190 3.48 210 101 185 298 129 18									
31 111 3.74 208 205 75 185 75 298 32 129 3.70 82 298 208 189 123 101 33 298 3.63 193 191 210 84 124 114 34 88 3.54 165 162 101 190 165 203 35 185 3.53 172 165 2 188 117 2 36 143 3.51 111 189 203 23 116 82 37 193 3.49 128 98 149 294 84 173 38 208 3.48 84 117 150 162 294 123 39 190 3.48 84 117 150 162 294 123 39 190 3.42 88 82 93 191 99 18									
32 129 3.70 82 298 208 189 123 101 33 298 3.63 193 191 210 84 124 114 34 88 3.54 165 162 101 190 165 203 35 185 3.53 172 165 2 188 117 2 36 143 3.51 111 189 203 23 116 82 37 193 3.49 128 98 149 294 84 173 38 208 3.48 84 117 150 162 294 123 39 190 3.48 210 101 185 298 129 185 40 2 3.45 185 173 180 193 161 124 41 210 3.44 2 187 193 207 189 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
33 298 3.63 193 191 210 84 124 114 34 88 3.54 165 162 101 190 165 203 35 185 3.53 172 165 2 188 117 2 36 143 3.51 111 189 203 23 116 82 37 193 3.49 128 98 149 294 84 173 38 208 3.48 84 117 150 162 294 123 39 190 3.48 210 101 185 298 129 185 40 2 3.45 185 173 180 193 161 124 41 210 3.44 2 187 193 207 189 189 42 150 3.42 88 82 93 191 99 29									
34 88 3.54 165 162 101 190 165 203 35 185 3.53 172 165 2 188 117 2 36 143 3.51 111 189 203 23 116 82 37 193 3.49 128 98 149 294 84 173 38 208 3.48 84 117 150 162 294 123 39 190 3.48 210 101 185 298 129 185 40 2 3.45 185 173 180 193 161 124 41 210 3.44 2 187 193 207 189 189 42 150 3.42 88 82 93 191 99 294 43 84 3.42 190 209 128 85 101 288 44 170 3.42 180 209 129 190 16									
35 185 3.53 172 165 2 188 117 2 36 143 3.51 111 189 203 23 116 82 37 193 3.49 128 98 149 294 84 173 38 208 3.48 84 117 150 162 294 123 39 190 3.48 210 101 185 298 129 185 40 2 3.45 185 173 180 193 161 124 41 210 3.44 2 187 193 207 189 189 42 150 3.42 88 82 93 191 99 294 43 84 3.42 190 209 128 85 101 288 44 170 3.42 150 201 99 129 190 161									
36 143 3.51 111 189 203 23 116 82 37 193 3.49 128 98 149 294 84 173 38 208 3.48 84 117 150 162 294 123 39 190 3.48 210 101 185 298 129 185 40 2 3.45 185 173 180 193 161 124 41 210 3.44 2 187 193 207 189 189 42 150 3.42 88 82 93 191 99 294 43 84 3.42 190 209 128 85 101 288 44 170 3.42 150 201 99 129 190 161 45 101 3.41 143 288 190 95 180									
37 193 3.49 128 98 149 294 84 173 38 208 3.48 84 117 150 162 294 123 39 190 3.48 210 101 185 298 129 185 40 2 3.45 185 173 180 193 161 124 41 210 3.44 2 187 193 207 189 189 42 150 3.42 88 82 93 191 99 294 43 84 3.42 190 209 128 85 101 288 44 170 3.42 150 201 99 129 190 161 45 101 3.41 143 288 190 95 180 190 46 165 3.38 101 161 161 82 201 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
38 208 3.48 84 117 150 162 294 123 39 190 3.48 210 101 185 298 129 185 40 2 3.45 185 173 180 193 161 124 41 210 3.44 2 187 193 207 189 189 42 150 3.42 88 82 93 191 99 294 43 84 3.42 190 209 128 85 101 288 44 170 3.42 150 201 99 129 190 161 45 101 3.41 143 288 190 95 180 190 46 165 3.38 101 161 161 82 201 187 47 82 3.36 180 208 123 93 210 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
39 190 3.48 210 101 185 298 129 185 40 2 3.45 185 173 180 193 161 124 41 210 3.44 2 187 193 207 189 189 42 150 3.42 88 82 93 191 99 294 43 84 3.42 190 209 128 85 101 288 44 170 3.42 150 201 99 129 190 161 45 101 3.41 143 288 190 95 180 190 46 165 3.38 101 161 161 82 201 187 47 82 3.36 180 208 123 93 210 201 48 180 3.34 294 88 95 123 111 193 49 294 3.28 191 71 129 170									
40 2 3.45 185 173 180 193 161 124 41 210 3.44 2 187 193 207 189 189 42 150 3.42 88 82 93 191 99 294 43 84 3.42 190 209 128 85 101 288 44 170 3.42 150 201 99 129 190 161 45 101 3.41 143 288 190 95 180 190 46 165 3.38 101 161 161 82 201 187 47 82 3.36 180 208 123 93 210 201 48 180 3.34 294 88 95 123 111 193 49 294 3.28 191 71 129 170 203 85 50 189 3.23 170 85 170 180 20									
41 210 3.44 2 187 193 207 189 189 42 150 3.42 88 82 93 191 99 294 43 84 3.42 190 209 128 85 101 288 44 170 3.42 150 201 99 129 190 161 45 101 3.41 143 288 190 95 180 190 46 165 3.38 101 161 161 82 201 187 47 82 3.36 180 208 123 93 210 201 48 180 3.34 294 88 95 123 111 193 49 294 3.28 191 71 129 170 203 85 50 189 3.23 170 85 170 180 208 150 51 201 3.19 201 210 189 192									
42 150 3.42 88 82 93 191 99 294 43 84 3.42 190 209 128 85 101 288 44 170 3.42 150 201 99 129 190 161 45 101 3.41 143 288 190 95 180 190 46 165 3.38 101 161 161 82 201 187 47 82 3.36 180 208 123 93 210 201 48 180 3.34 294 88 95 123 111 193 49 294 3.28 191 71 129 170 203 85 50 189 3.23 170 85 170 180 208 150 51 201 3.19 201 210 189 192 288 162 52 93 3.19 189 175 85 147									
43 84 3.42 190 209 128 85 101 288 44 170 3.42 150 201 99 129 190 161 45 101 3.41 143 288 190 95 180 190 46 165 3.38 101 161 161 82 201 187 47 82 3.36 180 208 123 93 210 201 48 180 3.34 294 88 95 123 111 193 49 294 3.28 191 71 129 170 203 85 50 189 3.23 170 85 170 180 208 150 51 201 3.19 201 210 189 192 288 162 52 93 3.19 189 175 85 147 185 180 53 75 3.08 192 204 298 75 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
44 170 3.42 150 201 99 129 190 161 45 101 3.41 143 288 190 95 180 190 46 165 3.38 101 161 161 82 201 187 47 82 3.36 180 208 123 93 210 201 48 180 3.34 294 88 95 123 111 193 49 294 3.28 191 71 129 170 203 85 50 189 3.23 170 85 170 180 208 150 51 201 3.19 201 210 189 192 288 162 52 93 3.19 189 175 85 147 185 180 53 75 3.08 192 204 298 75 187 188 54 124 3.06 93 149 201 203 <									
45 101 3.41 143 288 190 95 180 190 46 165 3.38 101 161 161 82 201 187 47 82 3.36 180 208 123 93 210 201 48 180 3.34 294 88 95 123 111 193 49 294 3.28 191 71 129 170 203 85 50 189 3.23 170 85 170 180 208 150 51 201 3.19 201 210 189 192 288 162 52 93 3.19 189 175 85 147 185 180 53 75 3.08 192 204 298 75 187 188 54 124 3.06 93 149 201 203 93 117 55 161 3.04 207 124 82 187 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
46 165 3.38 101 161 161 82 201 187 47 82 3.36 180 208 123 93 210 201 48 180 3.34 294 88 95 123 111 193 49 294 3.28 191 71 129 170 203 85 50 189 3.23 170 85 170 180 208 150 51 201 3.19 201 210 189 192 288 162 52 93 3.19 189 175 85 147 185 180 53 75 3.08 192 204 298 75 187 188 54 124 3.06 93 149 201 203 93 117 55 161 3.04 207 124 82 187 150 191 56 191 3.02 85 289 84 208 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
47 82 3.36 180 208 123 93 210 201 48 180 3.34 294 88 95 123 111 193 49 294 3.28 191 71 129 170 203 85 50 189 3.23 170 85 170 180 208 150 51 201 3.19 201 210 189 192 288 162 52 93 3.19 189 175 85 147 185 180 53 75 3.08 192 204 298 75 187 188 54 124 3.06 93 149 201 203 93 117 55 161 3.04 207 124 82 187 150 191 56 191 3.02 85 289 84 208 82 129 57 85 3.00 75 194 294 288 1									
48 180 3.34 294 88 95 123 111 193 49 294 3.28 191 71 129 170 203 85 50 189 3.23 170 85 170 180 208 150 51 201 3.19 201 210 189 192 288 162 52 93 3.19 189 175 85 147 185 180 53 75 3.08 192 204 298 75 187 188 54 124 3.06 93 149 201 203 93 117 55 161 3.04 207 124 82 187 150 191 56 191 3.02 85 289 84 208 82 129 57 85 3.00 75 194 294 288 193 75									
49 294 3.28 191 71 129 170 203 85 50 189 3.23 170 85 170 180 208 150 51 201 3.19 201 210 189 192 288 162 52 93 3.19 189 175 85 147 185 180 53 75 3.08 192 204 298 75 187 188 54 124 3.06 93 149 201 203 93 117 55 161 3.04 207 124 82 187 150 191 56 191 3.02 85 289 84 208 82 129 57 85 3.00 75 194 294 288 193 75									
50 189 3.23 170 85 170 180 208 150 51 201 3.19 201 210 189 192 288 162 52 93 3.19 189 175 85 147 185 180 53 75 3.08 192 204 298 75 187 188 54 124 3.06 93 149 201 203 93 117 55 161 3.04 207 124 82 187 150 191 56 191 3.02 85 289 84 208 82 129 57 85 3.00 75 194 294 288 193 75									
51 201 3.19 201 210 189 192 288 162 52 93 3.19 189 175 85 147 185 180 53 75 3.08 192 204 298 75 187 188 54 124 3.06 93 149 201 203 93 117 55 161 3.04 207 124 82 187 150 191 56 191 3.02 85 289 84 208 82 129 57 85 3.00 75 194 294 288 193 75									
52 93 3.19 189 175 85 147 185 180 53 75 3.08 192 204 298 75 187 188 54 124 3.06 93 149 201 203 93 117 55 161 3.04 207 124 82 187 150 191 56 191 3.02 85 289 84 208 82 129 57 85 3.00 75 194 294 288 193 75									
53 75 3.08 192 204 298 75 187 188 54 124 3.06 93 149 201 203 93 117 55 161 3.04 207 124 82 187 150 191 56 191 3.02 85 289 84 208 82 129 57 85 3.00 75 194 294 288 193 75									
54 124 3.06 93 149 201 203 93 117 55 161 3.04 207 124 82 187 150 191 56 191 3.02 85 289 84 208 82 129 57 85 3.00 75 194 294 288 193 75									
55 161 3.04 207 124 82 187 150 191 56 191 3.02 85 289 84 208 82 129 57 85 3.00 75 194 294 288 193 75									
56 191 3.02 85 289 84 208 82 129 57 85 3.00 75 194 294 288 193 75									
57 85 3.00 75 194 294 288 193 75		161	3.04				187		
	56		3.02		289	84	208	82	129
<u>58</u> <u>192</u> <u>2.97</u> <u>161</u> <u>172</u> <u>162</u> <u>124</u> <u>192</u> <u>93</u>	57	85	3.00	75	194	294	288	193	75
	58	192	2.97	161	172	162	124	192	93

59	207	2.96	288	207	187	186	85	192
60	288	2.84	124	186	191	2	162	208
61	162	2.81	162	179	192	161	191	210
62	187	2.73	187	75	288	179	179	207
63	179	2.65	179	143	165	143	207	179

Anexo 4 – Ordenamento dos 17 genótipos de *Brachiaria brizantha* do campo experimental três com base em índice de seleção estabelecido pela somatória da importância relativa de cada característica agronômica avaliada e ranking dos genótipos para cada caráter.

			Matéria	Matéria				
Ordem	Genótipo	Índice	seca	seca	% folhas	% folhas	Rebrota	Rebrota
Oraciii	Genoupo	marce	foliar	foliar	chuvas	seca	chuvas	seca
			chuvas	seca				
1	178	5.48	178	178	261	178	261	259
2	259	5.03	259	259	246	30	259	178
3	30	4.34	30	222	178	247	246	261
4	246	4.23	266	229	259	246	256	271
5	261	4.18	246	275	256	266	271	275
6	271	4.07	219	219	30	271	178	246
7	266	4.01	271	266	271	222	267	30
8	256	3.91	256	262	247	259	275	219
9	219	3.77	222	30	222	267	234	234
10	267	3.74	267	234	267	256	229	247
11	222	3.72	261	271	266	261	266	229
12	275	3.28	229	267	219	275	247	262
13	229	3.15	275	235	235	219	30	267
14	247	3.01	235	261	275	229	219	256
15	235	2.97	262	256	262	235	262	266
16	262	2.96	247	246	229	262	235	222
17	234	2.79	234	247	234	234	222	235

Anexo 5 – Ordenamento dos 41 genótipos de *Brachiaria brizantha* do campo experimental quatro com base em índice de seleção estabelecido pela somatória da importância relativa de cada característica agronômica avaliada e ranking dos genótipos para cada caráter.

				· · · ·				
			Matéria	Matéria				
Ordem	Genótipo	Índice	seca	seca	% folhas	%folhas	Rebrota	Rebrota
Ordeni	Genoupo	marce	foliar	foliar	chuvas	seca	chuvas	seca
			chuvas	seca				
1	252	5.78	252	166	252	213	252	252
2	213	5.40	242	296	296	252	213	296
3	296	5.16	245	224	213	276	276	213
4	276	5.04	225	290	276	263	245	276
5	22	5.00	213	214	22	30	296	22
6	30	4.79	166	263	30	9	242	30
7	251	4.64	218	30	251	250	258	251
8	263	4.54	216	270	245	212	22	245

9	245	4.43	221	9	225	258	225	225
10	242	4.35	254	264	263	214	263	263
11	225	4.30	263	22	255	245	250	255
12	166	4.20	224	231	270	221	30	270
13	270	4.02	270	216	260	225	254	260
14	255	4.00	272	221	258	255	255	258
15	9	4.00	236	260	166	264	9	166
16	260	3.98	251	232	242	251	251	242
17	224	3.92	255	213	214	296	221	214
18	258	3.90	260	236	9	242	212	9
19	214	3.90	276	295	272	268	217	272
20	221	3.88	22	230	212	290	290	212
21	290	3.78	268	218	221	224	214	221
22	272	3.68	258	237	290	22	260	290
23	250	3.61	241	217	224	216	216	224
24	254	3.54	240	226	250	239	268	250
25	268	3.45	30	268	236	260	230	236
26	231	3.36	296	225	231	217	166	231
27	212	3.35	214	240	237	218	232	237
28	216	3.31	9	272	254	241	272	254
29	241	3.28	228	251	268	254	224	268
30	218	3.27	226	241	241	166	264	241
31	237	3.25	230	255	232	232	237	232
32	232	3.22	295	228	264	228	241	264
33	264	3.22	264	252	228	226	240	228
34	236	3.20	290	276	230	230	236	230
35	240	3.10	217	239	218	231	231	218
36	228	3.09	232	242	216	236	218	216
37	230	3.08	231	258	240	240	228	240
38	226	3.01	237	254	295	272	239	295
39	295	2.94	250	245	226	295	270	226
40	217	2.76	239	212	239	237	226	239
41	239	2.44	212	250	217	270	295	217

Anexo 6 – Ordenamento dos 218 genótipos e as testemunhas cv. Marandu (30) e cv. Xaraés (178) de *Brachiaria brizantha* baseado nos efeitos genotípicos preditos para cada característica agronômica avaliada nos períodos das águas (A) e seca (S).

	(1) C 3CCa (5).					
Ordem	MSF ¹ - C	MSF - S	PF ² - C	PF - S	REB ³ - C	REB - S
1	72	178	252	172	252	71
2	132	132	242	252	213	213
3	188	259	213	194	71	259
4	178	166	289	178	172	209
5	140	188	172	116	289	289
6	144	95	194	175	72	72
7	138	138	71	138	276	252
8	166	73	205	79	186	276
9	106	123	261	39	77	178
10	259	166	22	72	138	261
11	116	89	276	242	3	178

12	252	717	178	178	209	263
13	163	96	296	3	119	132
14	71	72	138	245	61	128
15	61	291	72	61	178	204
16	3	163	246	199	261	96
17	30	296	140	106	245	30
18	147	116	106	77	296	61
19	313	144	204	71	79	199
20	296	178	175	209	39	98
21	139	30	3	96	242	186
22	89	139	178	313	106	97
23	213	147	79	205	205	172
24	276	224	77	65	30	30
25	96	290	259	225	173	66
26	30	214	116	176	204	68
27	22	129	39	55	175	77
28	30	222	263	112	56	79
29	77	263	139	213	258	313
30	251	229	256	128	96	205
31	104	199	250	119	143	3
32	104	275	313	66	68	119
33	73	51	186	78	22	138
34	141	30	251	54	259	9
35	209	219 99	135	114	291 194	250
36	178		117	70 122	194 89	212
37	291	190	254	132		258
38	266	131	61	99	225	271
39	30	137	173	30	263	275
40	245	52	68	149	163	158
41	176	65	114	165	313	51
42	114	270	143	113	147	89
43	717	128	118	76 204	54	291
44	203	107	70	204	67	214
45	289	104	245	166	166	245
46	205	185	176	218	250	154
47	246	266	112	216	246	147
48	219	313	30	101	142	149
49	175	9	291	58	144	70
50	225	264	102	157	146	55
51	119	59	146	221	105	56
52	69	22	141	247	98	65
53	263	231	113	62	103	52
54	68	1	270	97	154	69
55	95	262	199	144	139	76
56	154	62	132	246	30	103
57	117	114	188	152	254	163
58	173	66	30	173	170	194
59	103	216	166	254	256	88
60	52	141	152	30	255	95
61	97	294	163	111	9	143

62	199	221	271	263	132	165
63	79	109	89	140	97	717
64	255	182	30	151	149	146
65	271	260	225	266	140	54
66	270	232	30	224	271	58
67	135	53	111	73	30	59
68	194	105	184	30	141	78
69	149	61	154	137	66	102
70	260	83	209	127	178	116
71	1	55	78	67	267	99
72	99	170	717	270	76	221
73	112	203	23	135	128	225
74	186	37	66	271	199	62
75	258	136	166	28	717	1
76	166	213	144	139	251	32
77	256	180	55	222	73	73
78	242	70	142	289	114	166
79	214	236	96	259	69	168
80	102	145	147	108	151	30
81	9	142	247	154	112	84
82	272	58	76	272	58	255
83	55	140	137	1	90	264
84	37	121	179	126	104	112
85	129	295	103	717	188	126
86	182	158	157	236	168	127
87	222	112	65	201	64	137
88	51	154	268	182	1	246
89	59	30	224	166	221	23
90	212	23	258	34	28	111
91	221	230	28	150	113	170
92	70	193	182	52	298	175
93	123	38	151	158	88	298
94	142	93	119	141	37	63
95	23	234	59	51	275	67
96	290	150	155	136	95	108
97	183	135	105	88	53	122
98	38	113	67	251	164	152
99	224	111	73	255	184	176
100	298	74	1	98	118	251
101	131	169	97	260	158	296
102	204	183	98	53	23	242
103	98	84	255	210	137	268
104	137	108	109	267	102	290
105	62	192	222	117	78	139
106	267	97	108	109	2	37
107	127	90	124	102	212	38
108	78	271	9	291	217	74
109	208	218	260	185	290	104
110	82	237	88	59	86	107
111	152	30	293	256	74	144

112	91	2	207	261	152	153
113	193	205	267	189	70	34
114	56	126	58	276	135	224
115	261	217	75	275	214	30
116	158	134	171	84	260	219
117	136	80	208	22	75	234
118	165	78	69	74	123	247
119	113	148	52	168	124	28
120	53	298	127	107	165	53
121	172	91	104	268	117	120
122	111	191	37	163	169	140
123	128	226	210	190	127	151
124	76	162	153	188	234	171
125	86	165	266	23	216	101
126	134	189	101	148	268	39
127	84	168	136	258	108	169
128	210	76	2	294	293	22
129	66	98	121	241	229	216
130	250	268	203	240	116	239
130	185	225	145	38	52	114
131	67	240	231	146	59	203
133	90	3	148	30	121	203
133		3 117			182	82
	58		218	296		
135	2	272	221	121	266	173
136	168	251	126	89	247	229
137	88	103	38	214	91	262
138	190	241	62	162	107	267
139	150	167	74	298	230	64
140	65	86	149	9	166	80
141	39	67	150	63	131	109
142	236	101	272	80	51	121
143	143	69	241	193	84	145
144	293	173	107	228	294	164
145	231	187	185	207	136	167
146	184	82	92	226	80	83
147	101	255	156	167	30	90
148	180	209	183	230	120	260
149	237	102	180	191	129	217
150	254	201	53	142	161	218
151	151	228	193	104	189	241
152	294	288	51	295	219	254
153	74	161	93	134	65	166
154	118	77	128	85	176	123
155	268	208	64	131	99	185
156	191	151	54	37	101	124
157	241	64	90	129	190	189
158	170	88	99	90	262	294
159	80	267	168	264	235	288
160	169	71	190	95	55	113
161	201	252	56	82	180	142
		-				

162	109	156	161	156	201	182
163	232	146	123	290	210	91
164	264	176	131	217	167	131
165	189	32	134	93	145	148
166	83	164	214	123	171	184
167	228	106	95	145	34	157
168	121	85	164	86	148	118
169	230	276	129	69	111	293
170	218	210	169	56	62	86
171	192	171	91	164	159	232
172	28	34	219	91	32	161
173	216	79	170	64	109	190
174	108	63	189	155	203	105
175	240	153	237	60	208	141
176	146	122	85	170	288	187
177	93	152	63	171	185	228
178	207	175	228	159	160	226
179	107	204	80	122	232	256
180	85	160	240	103	272	201
181	122	159	290	118	224	106
182	75	157	298	180	264	193
183	295	119	226	232	156	85
184	148	127	201	231	187	150
185	161	239	86	192	134	162
186	226	54	122	147	122	180
187	64	149	82	237	237	188
188	288	124	120	75	93	117
189	153	289	159	183	150	191
190	145	184	212	250	222	129
191	229	120	232	219	241	230
192	159	28	60	229	83	231
193	156	60	84	235	157	236
194	124	155	34	262	63	240
195	54	235	216	169	38	272
196	164	242	235	120	82	295
197	32	258	294	160	193	156
198	275	194	158	83	126	159
199	160	56	162	234	240	160
200	162	172	167	105	192	75
201	126	254	187	203	155	93
202	171	68	160	239	85	192
203	63	39	275	187	162	208
204	187	207	83	184	191	183
205	235	245	264	153	236	237
206	239	186	295	68	183	270
207	217	293	262	208	231	60
208	179	179	32	288	153	134
209	167	212	191	32	218	210
210	34	92	192	124	228	266
210	262	75	288	186	239	92
411	202	13	200	100	43)) 4

212	157	118	229	2	270	222
213	120	143	236	161	226	235
214	155	250	165	179	60	207
215	247	261	234	92	295	179
216	234	256	217	143	179	136
217	92	246	230	293	92	155
218	60	247	239	212	207	135

¹MSF – Matéria seca foliar. ²PF – Porcentagem de folhas. ³REB – rebrota.