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Resumo

A modelagem a partir de dados geralmente tem duas facetas distintas: construir mode-
los explicativos sólidos ou criar modelos preditivos poderosos para um sistema ou fenô-
meno. Embora exista um senso instintivo de que prever e explicar são tarefas distintas,
muitas vezes se assume que modelos com alto poder explicativo são inerentemente de
alto poder preditivo. Apesar desta relação, os mais recentes trabalhos de modelagem de
dados se encaixam na metodologia de aprendizagem de máquina tudo-em-um, com a su-
posição básica de que todos os fatores explicativos importantes podem ser combinados
em um único modelo preditivo. Embora altamente adotada e estabelecida, a metodolo-
gia tudo-em-um negligencia que muitos fenômenos são realmente definidos por várias
subpopulações ou estruturas locais e, portanto, há muitos modelos de previsão possíveis
que fornecem interpretações contrastantes ou explicações concorrentes para o mesmo
fenômeno. Neste trabalho, apresentamos o ED-Ensemble (Explanation-Diversifying

Ensemble), uma alternativa à metodologia tudo-em-um. Nossa principal intuição é
que os modelos que têm suas decisões explicadas pelos mesmos fatores provavelmente
farão melhores previsões dentro das mesmas estruturas locais. O ED-Ensemble obtido
a partir de nossos experimentos superou consistentemente as abordagens tudo-em-um,
mesmo empregando os algoritmos de ensemble de última geração XGBoost e Random
Forest. Nossa abordagem proposta, considerando apenas primeira consulta, alcançou
um AUC de 0,78 usando XGBoost como algoritmo de aprendizado, representando um
ganho de desempenho relativo de até 20,37% comparado ao XGBoost tudo-em-um,
e AUC de 0,75 quando usando Random Forest como algoritmo de aprendizado, com
ganho de desempenho relativo de até 15,03% comparado ao Random Forest tudo-em-

um. Além disso, o número de features é significativamente reduzido, fazendo uso de tão
pouco quanto 15% das features. Ao considerar as consultas sequenciais, os experimen-
tos mostraram consistentemente que quanto mais consultas consideradas, maior será o
desempenho alcançado. Nossa abordagem EXP-MF combinada com o ED-Ensemble
alcançou uma AUC de 0,945 (aumento de 23,37%) utilizando cinco consultas. Uma
tendência de aumento semelhante na AUC também foi observada para os algoritmos



EXP-MF combinado com XGBoost e EXP-MF combinado com Random Forest, al-
cançando 0,843 (aumento de 50%) e 0,810 (aumento de 62,98%), respectivamente.
Finalmente, o ensemble proposto baseada em diversidade de explicações se apresentou
como uma alternativa superior à abordagem tudo-em-um em problemas de fenômenos
de múltiplas estruturas tanto nos dados de corte transversal quanto dados longitudinais.

Palavras-chave: Aprendizado de Máquina, Modelagem Exploratória, Modelagem
Preditiva, Estrutura de backbone, Combinação de Classificadores, Métrica de Diversi-
dade, Estabilidade Predição-Explicação, dados longitudinais.



Abstract

Modeling from data usually has two distinct facets: building sound explanatory mod-
els or creating powerful predictive models for a system or phenomenon. While there
is an instinctive sense that predicting and explaining are distinct tasks, it is often
assumed that models with high explanatory power are inherently of high predictive
power. In spite of this relationship, most recent data-modeling work fits into the all-

in-one machine learning methodology, with the basic assumption that all important
explanatory factors can be combined into a single predictive model. Although highly
adopted and established, the all-in-one methodology neglects that many phenomena
are actually defined by several subpopulations or local structures and therefore there
are many possible predictive models that provide contrasting interpretations or com-
peting explanations for the same phenomenon. In this work, we present ED-Ensemble
(Explanation-Diversifying Ensemble), an alternative to the all-in-one methodology.
Our main intuition is that models that have their decisions explained by the same
factors will probably perform better predictions within the same local structures. We
design and conduct an experimental evaluation as a case study to evaluate the perfor-
mance of our methodology to model the evolution of pain relief in patients suffering
from chronic pain under usual guideline-based treatment. Six hundred thirty-one par-
ticipants self-completed the McGill Pain Questionnaire and the Visual Analogue Scale.
Chronic pain can be primary or secondary to diseases. Its symptomatology can be clas-
sified as nociceptive, nociplastic or neuropathic, and is generally associated with many
different causal structures, challenging the typical all-in-one methodology. We show
that we can effectively combine models with competing explanations, promoting diver-
sity in ensemble, leading to significant gains in accuracy by enforcing a stable scenario
in which models that are similar in terms of their predictions are also similar in terms
of explanatory factors. Further, we present EXP-MF (model-EXPlanations as Meta-
Features). We follow the explanation-diversity feature selection proposed and extend it
to use model-explanations as meta-features in longitudinal data, as the standard pro-
tocol for a patient typically comprises many subsequent appointments. This approach



prevents us from neglecting a considerable amount of information. The ED-Ensemble
obtained from our experiments consistently outperformed the all-in-one approaches,
notwithstanding employing state-of-art ensemble algorithms XGBoost and Random
Forest. Our proposed approach considering the first consultation only achieved an
AUC of 0.78 using XGBoost as learning algorithm, relative performance gain up to
20.37% compared to the XGBoost all-in-one, and AUC of 0.75 when using Random
Forest as learning algorithm, relative performance gain up to 15.03% compared to the
Random Forest all-in-one approach. Also, the number of features is remarkably re-
duced, using as low as 15% of features. When considering sequential consultations, the
experiments consistently showed that the more consultations granted, the higher the
performance achieved. Our approach EXP-MF with an ED-Ensemble could achieve
an AUC of 0.945 (increase of 23.37%) using five consultations. A similar uptrend in
AUC was also observed for the XGBoost and Random Forest algorithms, achieving
0.843 (increase of 50%) and 0.810 (increase of 62.98%) respectively. Finally, our novel
ensemble based on diversified explanations presented as a superior alternative to the
all-in-one approach in multiple-structure phenomena problems with cross-sectional and
longitudinal data.

Palavras-chave: Machine Learning, Explanatory Modeling, Predictive Modeling,
Backbone Structures, Ensemble Learning, Diversity Metric, Prediction-Explanation
Stability, Longitudinal Data.
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Chapter 1

Introduction

We are interested in modeling complex phenomena defined by different sub-populations
and thus present diverse local structures. Local structures consist of subsets in data
space highly correlated with the output we want to predict. The underlying distribution
in the data we want to model may vary in different parts of the data space. Take, for
instance, a scenario where wants to predict if a particular treatment will be effective
for pain relief in a patient suffering from an unknown chronic pain condition. In this
case, the data consists of attributes extracted from patients’ self-reports obtained at
multiple appointment or consultation with the doctor. In more detail, the doctor
uses a formalized pain questionnaire, asking the patients to choose the characteristics
that best describe their pain (i.e., burning, tingling, sharp, or dull). The patient is
also asked how long the pain lasts, what makes it worse, and what relieves it (i.e.,
activities, medications, and weather). Predicting the evolution of pain relief is hard
because chronic pain can arise from many different conditions, like fibromyalgia, cancer,
arthritis, violent traumas, and many other possibilities [Pombo et al., 2014]. It may be
hard to detect these conditions at the first appointment. The data presents many local
structures so that the factors contributing to the correct treatment decisions depend
on a complex structure that emerges from specific characteristics reported by patients.
Further, it is crucial to also make use of sequential consultations in order to increase
confidence.

1.1 The Problem

Our case study consists of six hundred and thirty-one patients who sought medi-
cal help to treat chronic pain. Two thousand and five consultations are distributed
non-uniformly among the patients. The data consist of information collected mainly
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through the McGill questionnaire and the Visual Analog Scale (VAS). The data ob-
tained includes age, gender, pain intensity (discrete scale from 0 to 10), the McGill
score, Neuropathic Pain Scale, and pain perception dimension scores. In addition, it
is also obtained the medications that the doctor prescribed during the treatment. All
this information makes up three hundred and thirty-two features per consultation.

The goal is to predict the effectiveness of standard treatment for chronic pain.
Successful treatment occurs whether the patient achieves a significant reduction in pain
sensation at the end of the treatment, which in our case is the last visit. Specifically, an
overall reduction of pain intensity by 30% (aka, VAS 30) is assessed, formally considered
a successful treatment outcome [Dworkin et al., 2008b]. The ground truth labels are
obtained by calculating the difference in pain intensities reported in the first and last
consultation.

Given the specificities of the problem, the main computational challenges are data
high dimensionality and the presence of many sub-populations. Chronic pain can arise
from multiple causes. Back pain, for example, it may be caused by a combination of
factors that interact with each other: years of poor posture, carrying of heavy objects,
overweight, or even no apparent physical cause. Each sub-population is expected to
represent one cause of chronic pain. Modeling all local structures into a single model
may not be optimal. Breaking it down into smaller problems would benefit from
constructing simpler models with better performance since they would be easier to
optimize. If we knew in advance which points belong to which local structure, we
could simply create a model for each sub-population. Ideally, a model would be related
to a cause. However, the cause is unknown.

1.2 Motivation

Intuitively, if different data points (i.e., patients) are associated with different local
structures, we would expect each structure to be better described by a different model.
Then we can get a model for the entire data by combining (potentially simpler) models
for all the local structures. In this case, a simple solution is to divide the original
data space into biclusters, enabling concurrent feature and data point selection. Each
bicluster may approximate a local structure from which a model is built [Pansom-
but et al., 2011]. Another widespread solution is to estimate local structures in the
data using the Expectation-Maximization (EM) algorithm to get maximum likelihood
estimates [McLachlan and Peel, 2000]. More often, however, these many-structure phe-
nomena are modeled using the simple all-in-one approach, which fits all the available
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factors (or features) into a single model. The all-in-one approach is clearly sub-optimal
in multiple phenomena context since factors that are important for modeling one struc-
ture may become lurking or confounding variables influencing other structures in the
data. A branch of a decision tree, for instance, may mix different local structures, or
the same local structure may be fragmented into different branches of the tree. Also,
parametric models that require combinatorial non-convex optimization, such as gradi-
ent descent, would benefit by decomposing the phenomenon into local structures and
exponentially reducing the size of the search space [Friesen and Domingos, 2015].

Additionally, when considering sequential consultations from patients, the data
is organized as longitudinal data. Longitudinal data involve repeated observations for
the same subject at different points in time. In general, machine learning methods as-
sume that the random variables are independent and identically distributed. However,
longitudinal data from patient reports may violate this assumption, thus naively apply-
ing widely used machine learning algorithms such as Random Forest (RF) [Breiman,
2001], Support Vector Machine (SVM) [Cortes and Vapnik, 1995], or Artificial Neural
Networks (ANN) [Rosenblatt, 1958] to longitudinal data without any adaptation, while
possible, ultimately generates an inefficient model.

1.3 Our Solution

There are well-known solutions in the literature for estimating local structures in the
data. These solutions look at the data to identify local structures. We propose a
different approach. Since we have a phenomenon with a multiple-cause structure and
aim to create a model for each cause, the main challenge is inferring the cause as it is
unknown. The solution proposed uses explanations as a proxy for causation. We will
use the concepts of explanation and reuse these concepts for prediction.

We will start constructing the model space by systematically sampling many
models from randomly selected subsets of features. We will denote the explanation of a
model as a vector with the average contribution of each feature. Thus, the model space
will be composed of competing and, at the same time, contrasting explanations for the
same phenomenon. Next, by clustering the model space based on the explanation
criteria, we expect each resulting cluster to describe a similar pattern of explaining the
phenomenon (similar causation). Finally, we will select one model from each group to
be the representative prototype of the cluster. The combination of the prototypes allows
us to build an ensemble based on a diversity of explanations (as a proxy for causation).
The algorithm described we called ED-Ensemble (Explanation-Diversifying Ensemble),
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and it is our solution when we only consider the first consultation.
However, the standard treatment protocol for a patient typically comprises many

sequential appointments. Thus, our second solution aims to work with longitudinal
data. Using a human-centric approach, we propose to model the physician’s behavior
over sequential consultations. For instance, we aim to forget everything irrelevant,
carry only a small set of information between visits, and diagnose based on the current
consultation plus selected prior knowledge. Our approach extends the ED-Ensemble
algorithm to use previous models’ explanations as a temporal memory on longitudinal
data. Hence, the second solution uses the longitudinal structure present in sequential
consultations to increase the prediction confidence.

In summary, we evaluate two scenarios:

• The best we can achieve from the first consultation only (maximum anticipation
and suboptimal assertiveness).

• Study the trade-off between assertiveness and anticipation (if we decrease antic-
ipation, i.e., consider more consultations, can we increase assertiveness?).

1.4 Main Contributions

This thesis aims to reach two main contributions: 1) a new ensemble algorithm (ED-
Ensemble) in data with diverse local structures and 2) a novel method EXP-MF (model-
EXPlanations as Meta-Features) that enhances the usage of traditional machine learn-
ing approaches in longitudinal data. These two contributions are presented in more
detail in the following sections.

1.4.1 A New Ensemble Learning Approach for Modeling

Backbone-Structure Phenomena

The backbone structure is a particular type of local structure. There is a set of “back-
bone features” that, once set, causes the remainder of the features to decompose into
independent subsets in the data space. Unlike previous attempts [Agrawal et al., 2005],
we propose to cluster the explanation space1 instead of (bi)clustering the data space.
By analyzing the sampled model space, we found a strong link between model predic-
tions and model explanations. We show evidence that models having their predictions
explained by the same reasons (or factors) are likely suitable for modeling the same

1
We assume that explanations are given in terms of the central factors which unveil systemic

pattern(s) within the model predictions.
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local structures in the data space. In summary, the step-by-step of this contribution
are:

• We evaluate our proposed approach in a real case study that predicts whether
a treatment will be effective in reducing pain relief in patients suffering from
unknown chronic pain conditions. It is a fascinating case study because it is
defined by phenomena that exhibit the backbone structure. Thus, by learning
simpler models likely associated with different local structures, we can achieve fea-
ture decompositions that algorithms like feature elimination cannot. Many other
problems seem to exhibit the backbone structure (e.g., protein folding [Friesen
and Domingos, 2015], Alzheimer’s diagnosis [Jha and Kwon, 2017]).

• We present ED-Ensemble, a method to learning ensembles from local models (or
base models) that present diversity in their explanatory factors. While diversity is
recognized as a central element for significant performance improvements with the
ensemble, measuring diversity is not straightforward because there is no generally
accepted formal definition [Kuncheva and Whitaker, 2003]. In order to promote
diversity while learning the ensemble, we select local models associated with
different explanatory factors. Thus our ensemble strategy is fundamentally a
combination of competing explanations for the same phenomenon.

• We show that there is a multiplicity of performant models with diverse explana-
tions. Learning the ensemble by forcing prediction-explanation stability in the
sense that models that are similar in terms of their predictions should have similar
explanations leads to gains in accuracy up to 10%.

• We demonstrate that we can generate ensembles with combined features drawn
upon around 15% of the total features by inducing simpler local models. Hence,
along with a performance improvement, we can markedly reduce the number of
features used. The shortened features also improve interpretability, diminishing
the gap between ethics and clinical decision support systems (CDSS).

1.4.2 Model-Explanation as Meta-Features in Longitudinal

Data

The analysis of longitudinal data is traditionally performed using statistical meth-
ods [Verbeke et al., 2014; Perveen et al., 2020]. These methods, however, require many
assumptions about the data in order to work correctly and machine learning methods,
on the other hand, require considerably fewer assumptions about the data. One of
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the few assumptions is that the random variables are independent and identically dis-
tributed. However, longitudinal data from patient reports may violate this assumption
as observations are correlated for the same patient but independent across different
patients [Sela and Simonoff, 2012; Hu, 2021; Ngufor et al., 2019].

We introduce a novel machine learning method to longitudinal data to predict the
evolution of pain relief. Our approach uses previous models’ explanations (i.e., feature
importances) to function as a temporal memory on longitudinal data. Precisely, to
predict the output at consultation c, we extract feature importances [Lundberg and
Lee, 2017] from a model trained on the data up to consultation c � 1 and use these
explanations as memory meta-features about previous iterations. The intuition is that
our approach improves the current model by remembering important information from
previous consultations. In summary, the main contributions of this study are:

• We investigate the evolution of pain relief in patients suffering from unknown
chronic pain conditions. Specifically, given data from the patient’s sequence of
consultations, the model predicts the likelihood that the patient will significantly
reduce pain at the end of the treatment.

• Our novel modeling approach considers the temporal relationship existing in lon-
gitudinal data through a data-wise adaptation, which improves prediction per-
formance considerably.

• We propose an explanation-diversity feature selection approach which indicates a
preference for choosing feature importances carried over from previous consulta-
tions instead of the raw feature information. This preference is a strong indication
that feature importances contain more decisive information than features from
previous consultations.

• Finally, and most importantly, experimental results show that our method reaches
an area under the ROC (AUC) curve of 0.766 using data from consultation 1 alone
which follows an explanation-diversity feature selection procedure. In the second
consultation, the AUC value increases to 0.818 using model-explanations from
consultation 1 as meta-features and combining it with fresh data from consul-
tation 2. Similarly, the prediction performance increases to 0.945 within five
consultations (an increase of 23.37% from consultation 1 only), drastically reduc-
ing the treatment planning period.
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1.5 Thesis Statement

In many situations, the data is inherently composed of several local structures and
sub-populations. The traditional all-in-one approach considers the use of all data at
once to induce a single model. By assuming different local structures as different views
of the same data, it is harder for an algorithm to minimize the error by considering the
information of all views, in many cases contrasting. This thesis aims to show, based
on evidence, that in these situations, it is advantageous to take knowledge and make
use of the concept of these local structures for the induction of models that are more
robust and consistent with the data. Moreover, using only the information from the
first consultation alone (baseline) implies ignoring a substantial amount of data. Based
on this premise, we use collected data at the time point n and transfer the knowledge
acquired to n+1 through model explanations meta-features. We repeat the process so
that all accumulated knowledge is taken to the next consultation, and so on.

1.6 Thesis Structure

The remainder of the text is organized as follows. Chapter 2 provides a discussion of
relevant related work along with the essential foundations. Chapter 3 describes our
proposed approach for modeling multi-structure phenomena. Chapter 4 discusses the
case study results on modeling the evolution of pain relief in patients suffering from
an unknown chronic pain condition. Chapter 5 is dedicated to the bias and variance
decomposition of the error in the ED-Ensemble. Chapter 6 examines the use of EXP-
MF in longitudinal data. Finally, Chapter 7 presents the conclusions and future work.



Chapter 2

Related Work

Learning models from high-dimensional data is a well-studied problem in various fields
such as feature selection, feature decomposition, and ensemble learning. Our work
builds upon a wealth of previous research at the intersection of these fields. The
following sections will present related works that contributed to the development of
our approach.

2.1 Feature Selection

The curse of dimensionality is known as the set of phenomena that emerge when work-
ing with data containing a large number of features, compared to the number of in-
stances [Bellman, 1966]. In this context, due to the large size, the volume of data
grows so rapidly that the available data turns out to be scattered, directly impact-
ing algorithms that explicitly use searching, such as the k-nearest neighbors (k-NN).
This impact is also extended to other algorithms such as Artificial Neural Networks
(ANN) and Support Vector Machine (SVM), albeit indirectly. It becomes harder to
find patterns once data dimensionality has grown.

Over the years, several approaches to solving the problem have been proposed.
Principal Component Analysis (PCA) is one of the most well-known approaches to
dealing with high-dimensional data. PCA is a statistical method that uses an orthog-
onal transformation to find the most significant possible variance, converting the data
into a new dimensional space, where each dimension is orthogonal [Jolliffe, 2011]. How-
ever, PCA has some limitations that make its use unfeasible in our context. First, PCA
cannot be automatically used for feature selection. PCA rotates the data from one co-
ordinate system to another, such that the dimensions in the new coordinate system are
arranged in descending order concerning variance. Features with the largest variance

29
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are not necessarily the most important ones. Second, although PCA is possible to
apply to non-continuous variables, its use in these cases is debatable. We desire to
work with data that is not limited to continuous types only. Third, the interpretation
of models supplied with data in the new coordinate system generated by PCA is more
complex. New features created with PCA are not easily related to existing features,
making it difficult to explain how much each original feature contributed. Finally, our
data contains many different local structures. The main limitation that prevents us
from using PCA is the lack of knowledge in associating the points with their respective
local structure (e.g., fibromyalgia in the context of chronic pain). Decomposing data
in local structures is still a problem to be addressed but not yet solved.

An alternative method to address high-dimensional data is to reduce the number
of features, selecting just a critical subset. A typical case is testing all features com-
binations and choosing those resulting in the slightest error. However, this alternative
is restricted to datasets with only a few features due to the exponential increase in
combinations.

In general, methods for feature selection can be grouped into three classes: filter,
wrapper, and embedded. Filter-based methods select features regardless of the model,
while wrapper methods rely on the specific model used. Although filter-based methods
are expected to yield poorer results than wrapper methods, it has the benefit that fewer
computational resources are expended. Examples of filter-based methods are RELIEF
[Kira and Rendell, 1992] (and the family of derived algorithms), Correlation-based
Feature Selection (CFS) [Hall, 1999] and Consistency Measure [Hall, 2000]. One major
drawback of this approach is that a subset of highly correlated features can dominate
the selection.

Wrapper methods use the inductor algorithm to evaluate the quality of the fea-
tures subset, leading the search in the feature space. Heuristics applied to the prob-
lem are forward selection, backward elimination [Maldonado and Weber, 2009] and
its modifications as Recursive Feature Elimination (RFE) employed in SVM [Guyon
et al., 1992]. The main limitation of the wrapper methods is that it requires testing a
high number of combinations, being thus very expensive, clearly when the feature set
is large.

Lastly, embedded methods do feature selection interleaved with learning. For
instance, in tree-based ensemble algorithms [Chen and Guestrin, 2016; Breiman, 2001],
each feature is evaluated as a potential splitting variable, which makes them robust
to unimportant/irrelevant features. Features that are not discriminative will not be
selected as the splitting variable and hence will be associated with a low importance
value. Nonetheless, feature selection methods are not suitable for modeling phenomena
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defined by multiple local structures [Maimon and Rokach, 2002]. The model does
not include features not influencing the dependent variable, and correlations between
features and the dependent variable are likely to vary in different local structures that
exist in the data. The dependent variable is influenced by most of the features, but the
observed correlation strength may vary depending on the local structures in the data
space. Removing features may cause a significant loss of relevant information.

2.2 Feature Decomposition

Whereas feature selection aims to identify a representative set of features from which to
build a model, feature decomposition aims to decompose the original set of features into
several subsets. The feature decomposition changes the representation of a learning
problem depending on the local structures in the data space. Instead of learning a
single complex model, several sub-problems with different and smaller feature sets are
defined.

Co-training is a semi-supervised learning approach developed by Blum and
Mitchell [1998] that also performs feature decomposition. It assumes that data natu-
rally has two views, and each view would be a set of mutually exclusive features. A view
would potentially have a different confidence in predicting a set of unlabelled instances
than another view. At each step, unlabelled instances with high trust in prediction
are added as “probably labeled” instances. This process continues iteratively until a
stop criterion is reached. Co-training has been successfully applied to problems where
the amount of unlabeled data available is enormous compared to labeled [Wan, 2009;
Kiritchenko and Matwin, 2011].

Later, Chen et al. [2011] extended the original co-training work in order to per-
form feature partitioning during learning by generating two sets of mutually exclusive
features that satisfy the required co-training hypotheses. While co-training is deemed
as a robust approach, its success is highly dependent on the subset of features built, be-
ing subject to the validity of the independence hypothesis in the set of features [Nigam
and Ghani, 2000].

An alternative feature decomposition approach is biclustering [Cheng and Church,
2000], which is a class of clustering algorithms that concurrently group features and
data points. Formally, the goal is to find local structures in the data space defined
as subsets of data points in which a specific subset of features is highly correlated.
Thus, a subset of highly correlated features within a local structure may be a set of
independent features within other regions of the same data space. Oliveira and Madeira
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[2004] presents an excellent survey on the subject.

2.3 Ensemble Learning

Ensemble methods are learning algorithms that construct a set of models and then
classify new data points by taking a (weighted) vote of their predictions. It is based
on the assumption that multiple hypotheses tend to produce more robust and stable
solutions than a single hypothesis [Topchy et al., 2004].

Often the objects to be clustered have multiple aspects or views, and base models
may be built on distinct views that involve nonidentical sets of features or subsets
of data points [Ghosh and Acharya, 2011]. This is known as multiview clustering.
Different sets can be formed by different feature sets, known as Feature Distributed
Clustering (FDC), where each set has a subset of different features, but all data is
used. An alternative would be to use all features but in distinct subsets of data. This
is known as Object Distributed Clustering (ODC) [Strehl and Ghosh, 2002].

In Pansombut et al. [2011], the authors presented Biclustering-driven ENsemble
of Classifiers (BENCH), a method to create an ensemble using biclusters. Their ap-
proach first splits the original data space into biclusters, and each bicluster becomes a
base model candidate. Despite biclustering being an unsupervised technique, BENCH
partly takes into account labels. It considers labels and their correlation with the
cluster to form candidate datasets capable of adequately distinguishing them.

Additionally, Wang et al. [2011] proposed the Nonparametric Bayesian Clustering
Ensemble (NBCE), a method that can discover clusters in the consensus clustering. A
benefit provided by NBCE is that it is not required to define the a priori number of
clusters. Also, there is no need to maintain the desired properties of the Bayesian
Clustering Ensemble.

2.4 Machine Learning on Longitudinal Data

In cross-sectional data, it is assumed that all data samples were collected at the same
point in time. In longitudinal data, on the other hand, multiple observations are made
for the same subject, and these observations are at different points in time. Also, the
samples between different subjects may be at further points in time. In this hierar-
chical arrangement of longitudinal data, observations across subjects are independent,
and observations for the same subject are dependent. For the accurate modeling of



2. Related Work 33

longitudinal data, it is crucial to consider the correlation between observations of the
same subject [Sela and Simonoff, 2012; Hu, 2021; Ngufor et al., 2019].

Traditional machine learning approaches, e.g., Support Vector Machine (SVM)
and Random Forest (RF), are primarily designed to work with cross-sectional data.
Conversely, some approaches, such as the Hidden Markov Model (HMM), are naturally
suited for longitudinal data though commonly with some limitations. For instance,
HMM requires regularly sampled longitudinal data, i.e., an equal number of repeated
observations across subjects [Perveen et al., 2020]. Another approach naturally tailored
for longitudinal data is the recurrent Long Term Support (LSTM) network architecture.
However, like the vast majority of deep learning approaches, it requires a large amount
of training data [Jiang et al., 2020].

In the literature, for prediction on longitudinal data, we can find several adapta-
tions of machine learning algorithms that naturally work on cross-sectional data to work
on longitudinal data. Trees and their variations, particularly RF, are the approaches
with many adaptations [Segal, 1992; Capitaine et al., 2021; Sela and Simonoff, 2012].
RF is an algorithm that works better than trees the vast majority of the time [Breiman,
2001], and especially for high-dimensional data [Capitaine et al., 2021; Verikas et al.,
2011].

Fard et al. [2016] attempts to predict an event at the end of the longitudinal study
using the information at the early stage of the study. Two main aspects motivate the
search for prediction with the minimum number of observations. There is a high cost
to obtain labeled data. And in many situations, measurements can be obtained just by
waiting for such an event. The proposed frameworks are based on Naive Bayes (ESP-
NB), Tree-Augmented Naive Bayes (ESP-TAN), and Bayesian Network (ESP-BN).
Experiments with synthetic and real data showed they are more effective in predicting
future events than RF and Linear Regression (LR) approaches. However, for datasets
with the most significant number of features (77 and 54, respectively), the performance
AUC metric estimated was similar to the RF. Notably, for the Kickstarter dataset with
77 features, the RF performance (0.845) outperforms ESP-NB (0.822) and ESP-TAN
(0.827) and nearly equals to ESP-BN (0.847).

The work of Capitaine et al. [2021] proposes a general approach for RF on high-
dimensional longitudinal data where the number of predictors p is much larger than
the number of observations n, i.e., p � n. Unlike previous approaches using tree-
based models within a semi-parametric mixed-effects model, the authors propose a
flexible stochastic model allowing the covariance structure to vary over time. Experi-
ments showed that the proposed approach achieved better performance when the data
had high dimensionality than other state-of-the-art approaches. Again, the robust-
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ness of RF stands out. The real dataset experimented showed similar performance to
algorithms specifically adapted for longitudinal data: Mixed Effects Random Forests
(MERF) [Hajjem et al., 2014] and REEMforest [Capitaine et al., 2021]. However, RF
showed inferior performance compared to the SMERF and SREEMforest variations,
evidencing that taking into account the longitudinal aspect of the data leads to de-
creased prediction error. Unlike our proposal, the approach of Capitaine et al. [2021]
addresses extreme high-dimensional cases, where the amount of predictors is orders of
magnitude larger than the number of instances. For instance, the real data consid-
ered comprises 17 instances and 32,979 predictors. The study’s main weakness is that
feature selection is done after model convergence, allowing confounding situations to
occur.

The authors in Ngufor et al. [2019] propose a general framework for prediction
in longitudinal data, combining the advantages of the random-effects structure of the
Generalized Linear Mixed-effect Model (GLMM) with the benefits provided by machine
learning models. GLMM is the standard statistic approach for longitudinal data. Still,
parametric linear models make assumptions about the data that are often difficult
to verify in actual, complex data. Ngufor et al. [2019] proposes the Mixed-Effect
machine learning (MEml) framework, where GLMM estimates the random-effects and
the fixed-effects are calculated by machine learning algorithms. From the results, we
can highlight: (1) the RF algorithm is robust, showing performance on longitudinal
data often similar to algorithms explicitly tailored for this data organization; (2) the
greater the number of observations in the samples, the more significant the performance
gap between models that take into account the random-effects with those that do
not. Our work, in turn, manipulates a reduced number of observations. Finally, RF
presented itself as a good benchmark for our proposal, given its good performance when
few observations are available.

Hence, adaptation is required to employ traditional machine learning approaches
on longitudinal data properly. On the data, through manipulation to fit the specifica-
tion expected by the algorithm. Or on the algorithm, making it capable of handling
longitudinal data correctly. We are particularly interested in data-level adaptations to
allow (enhance) the employment of traditional machine learning algorithms on longi-
tudinal data.
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2.5 Methods for Modeling Pain

Data availability and quality are of fundamental value in chronic pain modeling. In the
1970s and 1980s, few hospitals collected structured computer data. In addition, those
hospitals collecting data usually had their own nomenclature and definition, hindering
any attempt to algorithmically model pain [Navani and Li, 2016]. Nowadays, the
amount of data available is vast, along with the advancement in the standardization
of medical nomenclatures.

2.5.1 Machine Learning

Recent works seek to model chronic pain in a computer system to predict the evolution
of the disease in the patient. Navani and Li [2016] build a machine learning system
for calculating dynamic changes to the weight-based chronic pain risk score on vari-
ous aspects of health behavior. However, only three sources of information are used:
depression, nutrition, and physical activity.

Machine learning approaches to predictive analysis of pain models have some
well-known limitations. Pieterse et al. [2019] provide us examples where the generated
models are no better than human-analyzed regression models and, in some cases, are
doomed to overfitting. Also, Goldstein et al. [2016] points out that clinicians are aware
that in machine learning algorithms, it is not possible to see or understand what exactly
influences model prediction directly. Besides, the prediction of an event without the
ability to change the output is questionable.

A systematic review in clinical decision support systems for pain management
is presented by Pombo et al. [2014]. The authors observed the great diversity of al-
gorithms applied in the Clinical Decision Support Systems (CDSSs): rule-based algo-
rithms such as C4.5, CART, PRISM, artificial neural networks, and statistical learning
algorithms are well-known choices. Furthermore, as reported by Abad-Grau et al.
[2008], it appears to be hard for medical experts to build valid models when too many
variables influence the dependent variable. Pombo et al. [2014] observe that this lim-
itation leads to the design of low-accuracy systems. Moreover, black-box approaches
seem a misleading option considering the system should assist clinicians to reach a
decision.
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2.6 Our Work

Intuitively, for the local models to form an improved ensemble, they must make cor-
rect predictions on diverse subsets of the data space. We exploit a distinct notion of
diversity in terms of the explanatory factors within each local model. By learning local
models composed of different feature sets, we can achieve feature decompositions that
feature selection algorithms cannot. We show that our proposed approach can model
phenomena that exhibit “backbone structures”, a type of local structure induced by a
specific feature that, once set, causes the remainder of the features to decompose into
independent ones subsets in the data space.



Chapter 3

Ensemble by Diversifying
Explanations

This chapter presents ED-Ensemble, a novel proposed approach for modeling phe-
nomena defined by multiple local structures in the data space known as backbone
structures. Formally, we want to learn a model from data that is a mixture of sub-
populations where each subpopulation is associated with a particular subset of features.
The corresponding optimization problem has a non-convex error surface with no obvi-
ous global minimum, thus implying a multiplicity of performant models. Each of them
provides a different explanation for the phenomenon. Therefore, there may be many
contrasting interpretations or competing explanations for the same phenomenon. The
modeling approach we will describe in this chapter is based on finding an explanation
for the phenomenon coherently with all competing explanations. Specifically, we pro-
pose to decompose the original set of features into several subsets so that a particular
model is built for each subset of features. Then, the generated models are clustered
according to their explanatory factors, promoting the diversity in possible explanations
while learning the ensemble. We expect the final ensemble model to correspond to a
more global explanation for the phenomenon, improving prediction accuracy.

3.1 Local Structures

A data space is defined as a set of n data points of the form (x, y)n, such that x 2 R
d is

given as a feature vector {x1,x2, . . . ,xd} and y is the ground-truth output for x. Often,
in high-dimensional data spaces, regions show complex correlations among a specific set
of features and the target label, and the same correlations are not necessarily so strongly
observed in other regions of the data space. Thus, the theory�data relationship varies

37
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Figure 3.1: (Color online) Left � An illustrative example of a data space with three
local structures. For simplicity and to avoid clutter, local structures are shown as
contiguous regions in the data space, but local structures may be non-contiguous in
both axes. Right � An illustrative example of model preferences for three hypothetical
models A, B, and C in H

0. Probabilities that a model assigns to points in the lighter
region are closer to true label than the probabilities that the model assigns to points in
the darker regions. Model A shows preference for points in the green structure. Model
B shows preference for points in the red structure. Model C shows preference for points
in the blue structure. A model may also show preference for points within multiple
structures simultaneously.

in different regions of the data space, forming local structures defined as subspaces
spanned by a set of data points and a set of features [Tanay et al., 2004, 2005], as
illustrated in Figure 3.1 (Left). Local structures can overlap and are often the result
of mixing different sub-populations or distributions into the same data space. Hence
one cannot easily separate them into multiple sub-spaces. A particular type of local
structure resembles a backbone in the sense that there is a set of features (aka backbone
features) that show a strong correlation with a specific set of target labels. Thus, forcing
a backbone feature to appear in the same model with non-related features may incur
confounding situations.

3.2 Sampling of Model Space

Learning a model from the data space requires the minimization of an objective function
f(x). Instead of simply mixing multiple different structures into a single model x and
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minimize f(x), we sample the model space by minimizing different functions f(x0),
such that x0

✓ x and |x0
| ⌧ |x|. Features that compose each model x0 are randomly

selected, and we used gradient boosted trees [Chen and Guestrin, 2016] and Random
Forests [Breiman, 2001] as learning algorithms (but other algorithms can be applied
as well). After sampling the model space, each model x0 is evaluated with respect to
an error measure `(x0) on a validation set, so that only minimally performant models
for which `(x0)  ✏ are included in the final model space H

0. At this point, we expect
that H

0 contains performant models corresponding to possible explanations for the
phenomenon.

The Algorithm 1 presents the pseudocode to generate the sampled model space.
Given a learning algorithm l, a dataset d, an upper limit on the number of sampled
features t, the algorithm generates an external file with each line describing a trained
model supplied with a randomly selected subset of features.

Algorithm 1 Model Space Sampling
Input Learning algorithm l, dataset d and maximum number of features t.
Output External file where each line describes a trained model supplied with a

random subset of features.
1: for n 1, t do

2: if n > 1 then

3: k  10000
4: else

5: k  500
6: end if

7: combs  Randomly generate k features combinations of length n
8: for each x_prime in combs do

9: Learn a model m using the learning algorithm l, and the training dataset
d taking into account the feature subset selected in x_prime only (5-fold cross
validation)

10: Estimate AUC-ROC
11: Obtain probability values from model predictions
12: Write to an external file with the following information <n, mean(AUC-

ROC), variance(AUC-ROC), x_prime, probability values>
13: end for

14: end for

3.3 Representing Model Preferences

We represent the model preference as a n-dimensional vector P(x0) = {p1,p2, . . . ,pn},
where pi corresponds to the probability that model x0 has assigned to data point i. We
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expect that models in H
0 are representative of the diverse local structures that exist in

the data space, as illustrated in Figure 3.1 (Right). By filtering performant models for
which `(x0)  ✏ we expect that the corresponding local structure is properly explained
by the corresponding model x0.

3.4 Representing Model Explanations

We represent how model x0 explains the phenomenon as a d-dimensional vector E(x0) =

{e1, e2, . . . , ed} showing which features are driving the model’s prediction. Specifically,
ei takes a value that corresponds to the influence that the respective feature xi had
on the model decision. Since we do not assume feature independence while minimizing
f(x0), then correlated features within model x0 should share credit or importance. For
this reason, we employ the average SHapley Additive exPlanations (SHAP) values for
accessing feature importance.

3.4.1 SHapley Additive exPlanations

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the
output of any machine learning model. Given an instance x, SHAP provides us with
the weighted contribution of each feature in the outcome. As with LIME [Ribeiro et al.,
2016], SHAP focuses on local methods. It aims to learn how the model behaves in the
vicinity of an instance x. This behavior, however, may not truly represent the original
model f in the entire data space. After all, only the model itself reliably describes
the behavior globally. SHAP uses an explanation model g that is capable of locally
represent f . The explanation model is described as:

g(z0) = �0 +
MX

i=1

�iz
0
i, (3.1)

where z0 2 {0, 1}M , M is the number of simplified input features, and �i 2 R is the
feature contribution.

There is a difference in features and interpretable data representations. Along
with features contributions, a model to be interpretable needs to make use of a rep-
resentation that is human-understandable [Ribeiro et al., 2016]. For instance, word
embedding is a well-known representation used in texts. Even if the approximate
model g provides each feature’s contribution, the interpretability is limited. The fea-
tures themselves are not interpretable. Instead, a bag of words can be used as an
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interpretable alternative representation of the same information. There is a function h

such that x = hx(x0), mapping the simplified input x0 into the original input x.
Lundberg and Lee (2017) describe SHAP as a permutation-based approach for

feature importance attribution, which defines a model as a cooperation of features. It
assigns a value for each feature in the cooperation based on its contribution to the
model decisions. There are many other feature attribution methods [Ribeiro et al.,
2016, 2018], but SHAP is the only method with the three desirable properties:

• Local accuracy: The explanations are truthfully explaining the model.

• Missingness: Missing features have no attributed impact on the model decisions.

• Consistency: If a model changes so that some feature’s contribution increases or
stays the same regardless of the other features, that feature’s attribution should
not decrease.

Options to calculate the explanation model g include LinearSHAP, KernelSHAP,
DeepSHAP and TreeSHAP [Lundberg et al., 2020]. In this work, we used TreeSHAP
since our learning algorithms are based on gradient boosted trees or random forests.
TreeSHAP takes only “allowed” paths within the tree, meaning it does not include
non-realistic combinations of features as in other permutation-based methods. Instead,
it takes the weighted average of all the final nodes reachable by a certain coalition of
features. Differently from the other options, TreeSHAP scales linearly with the number
of data points and grows at a polynomial rate with the number of features.

3.5 Ensemble Learning

As H0 may contain models with competing explanations, we want to build a synthetic
model from H

0 by exploiting two concepts:

• The diversity between individual models. Diversity is recognized as a funda-
mental factor to achieve significant performance improvements with the ensem-
ble [Kuncheva and Whitaker, 2003] by allowing the group to compensate for
individual errors. However, measuring diversity is not straightforward because
there is no generally accepted formal definition. In order to promote diversity
while learning the ensemble, we cluster models in H

0 based on the distance be-
tween their explanation vectors (i.e., SHAP values). Ideally, this creates many
groups of internally dense and separated from the rest of the models in terms
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of their explanatory factors, i.e., within each cluster, the explanatory factors are
similar. In contrast, factors within disjoint clusters are dissimilar.

• The stability between model explanation and empirical predictions [Shmueli,
2010]. We define a configuration of clusters as stable if models within the same
cluster are associated with the same explanatory factors and perform similar
predictions. Achieving cluster stability is challenging, as models with similar
predictions can be associated with different explanatory factors. In order to pro-
mote stability while learning the ensemble, we cluster the model space based on
the distance between the explanation vector (i.e., SHAP values) associated with
each model. However, we maximize cohesion and separation of the clusters based
on the distance in terms of model preference. This enforces a stable configuration
of clusters containing similar models in terms of their predictions and explanatory
factors.

Once clusters are discovered, we select a prototype model within each cluster to
have as many prototype models as clusters. In particular, we select the most performant
model within each cluster to maximize the ensemble’s performance. The phenomenon
modeled may have many explanations, and each prototype model is a potential expla-
nation. In order to create the ensemble, we adopted the most straightforward combi-
nation in which each prototype model is given a weighted vote (i.e., validation error),
and the label with the most votes is the prediction of the ensemble.

Figure 3.2 presents an overview of the framework proposed. The novelty in ED-
Ensemble is that it promotes diversity in creating an ensemble based on competing
explanations. The clusters formed proved to be coherent and concise, generating sta-
bility in prediction-explanation.
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Figure 3.2: (Color online) An overview of the ED-Ensemble. It starts with an input
tabular matrix n⇥m, being n the number of instances and m the number of features.
a) Randomly sample features sets with sizes from 1 to f . For each set sampled, use the
learning algorithm to induce a model; b) The set of all generated models will compose
the model space; c) Compute the average of SHapley Additive exPlanations (SHAP)
values for each model in the model space; d) Cluster the model space based on the
SHAP average. Select a prototype to represent each cluster. We will choose the model
with the highest AUC; e) Build an ensemble using the prototypes previously selected
as base models.



Chapter 4

Case Study: Predicting the
Evolution of Pain Relief

In this chapter, we discuss our case study in which it is particularly interesting to
evaluate our proposed modeling approach, as it corresponds to phenomena with many
complex local structures. Then we discuss our evaluation procedure and analyze the
results obtained. In particular, our study aims to answer the following research ques-
tions:

RQ1: Is there a relationship between model explanation and model preferences?

RQ2: Are prototype models diverse in terms of explanatory factors?

RQ3: Can we build effective ensembles by combining models that are associated with
diverse explanatory factors?

RQ4: Is our ED-Ensemble approach superior than the biclustering ensemble approach?

Pain makes us aware that something is wrong with our bodies. The International
Association for the Study of Pain (IASP1) defines pain as an unpleasant sensory and

emotional experience associated with actual or potential tissue damage, or described in

terms of such damage. If the pain lasts beyond the time expected for healing following
surgery, trauma, or other condition, it might be characterized as chronic. There is no
accepted universal paradigm for chronic pain prevention and management [Navani and
Li, 2016].

Chronic pain is a public health concern that affects 20�30% of the popula-
tion of Western countries. It ranks among the most common diseases affecting hu-

1
http://www.iasp-pain.org
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mans [Williams and Craig, 2016] and is the most usual cause of years lived with dis-
ability worldwide [Dworkin et al., 2008a].

Despite the existence of several guidelines and recommendations for its treatment,
up to 40% of chronic pain patients may remain symptomatic despite the best medical
treatment. This is in part due to the heterogeneity of chronic pain mechanisms and
individual variables. They are not linearly related to the etiology of pain but to the
interplay of its pathophysiology, personal variables, and social context [Ferreira et al.,
2016]. Chronic pain usually falls into one of the following categories:

• Neuropathic pain: occurs when there is actual nerve damage. Nerves connect
the spinal cord to the rest of the body and allow the brain to communicate with
the skin, muscles, and internal organs. Nutritional imbalance, alcoholism, toxins,
infections, or autoimmunity can cause all damage to this pathway and cause pain.
Neuropathic pain can also be caused by a cancer tumor pressing on a nerve or a
group of nerves. People often describe this pain as a burning or heavy sensation
or numbness along the affected nerve path.

• Nociceptive pain: is caused by damage to body tissue and is usually described
as a sharp, aching, or throbbing pain. This kind of pain can be due to benign
pathology, tumors, or cancer cells growing larger and crowding other body parts
near the cancer site. Nociceptive pain may also be caused by cancer spreading
to the bones, muscles, or joints or that causes the blockage of an organ or blood
vessels.

• Nociplastic pain: arises from altered nociceptive function despite no clear evi-
dence of actual or threatened tissue damage causing the activation of peripheral
nociceptors or evidence for disease lesion of the somatosensory system causing
the pain.

Although there have been many scientific advances in understanding the neuro-
physiology of pain, precisely defining the best therapy for a patient is still a challenge.
Chronic pain is an individualized experience with multifactorial etiology, and under-
standing the biological, social, physical, and psychological contexts is vital to successful
treatment. Standardized self-reported instruments and questionnaires to evaluate the
patient’s pain intensity, functional abilities, beliefs and expectations, and emotional
distress are available. They can be used to assist in treatment planning.
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4.1 Pain Data

Pain is often assessed on a scale from “no pain” to “worst pain imaginable”. The Visual
Analogue Scale (VAS) [Hill et al., 2008] is a 10-cm line without markings from no pain
to worst pain. Patients mark their pain score, and measurement in centimeters defines
their level of pain. Six hundred thirty-one participants self-completed the McGill Pain
Questionnaire [Melzack, 1975] and the VAS. The McGill Questionnaire assesses both
the quality and intensity of the pain. In summary, the questionnaire is composed of 78
words, of which respondents choose those that best describe their experience of pain
(multiple markings are allowed). The words are organized in three dimensions:

• Sensory dimension: encompasses both the quality and severity of pain in terms
of its temporal, spatial, pressure and thermal properties.

• Affective dimension: refers to feelings and sentiments in the presence of pain,
that is, how the patient feels emotionally due to pain.

• Evaluative dimension: refers to the global evaluation of the situation experi-
enced by the patient and is strongly influenced by previous painful experiences.
It is a subjective assessment of overall pain intensity.

As a result, our pain data includes variables regarding pain severity, change in
pain relief over time, pain radiation, among others. Data was also collected via self-
report on socioeconomic status, global rating of overall health, known risk factors (i.e.,
age, smoking, alcohol intake), and concomitant illnesses. Finally, our pain data also
includes the therapies prescribed by the doctor. In all, our pain data is composed of
332 variables about pain relief, socioeconomic status, and prescribed treatments.

4.1.1 Predicting the Evolution of Pain Relief

Satisfactory treatment can only come from a comprehensive assessment of the biolog-
ical etiology of the pain in conjunction with the patient’s specific psychosocial and
behavioral presentation. A first consultation is potentially a pivotal event in a pa-
tient’s pain history, affecting treatment adherence and engagement with longer-term
self-management [White et al., 2016]. The objective of our retrospective study is to
predict, using data obtained at the first consultation only, if a particular treatment
or therapy will be effective in reducing the patient’s pain relief. We evaluated three
different measures to identify success in patient’s pain relief:
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• An overall reduction of pain intensity by 30% (aka, VAS 30), which is formally
considered to be a successful treatment outcome [Dworkin et al., 2008b]. The
ground truth labels are obtained by calculating the difference in pain intensities
reported in the first and last consultation.

• An overall reduction of pain intensity by 50% (aka, VAS 50). Again, the ground
truth labels are obtained by calculating the difference in pain intensities reported
in the first and last consultation.

• The Global Impact Change (aka, GIC) as a discrete variance scale from -3 to 3
provided by the doctor indicating the degree of improvement in pain relief in the
doctor’s view. Success is given as a value of at least 2 in the last visit.

4.1.2 Characterization based on VAS 30

As a successful treatment outcome can be formally given by VAS 30, the analysis
presented throughout this section refers explicitly to the VAS 30 label. Considering
this label, we divided the 631 patients in our study into two populations:

• Population A: 277 patients for whom the treatment resulted in a significant re-
duction in pain relief. These patients reported a significant +30% reduction in
pain relief after the treatment was completed.

• Population B: 354 patients for whom the treatment was not effective.

Table 4.1 shows the characteristics of the patients in our dataset. Pain is more
prevalent in women, and it is harder to achieve significant pain reduction in patients
that report low initial pain intensities. The table also shows three dimensions of pain
perception. The affective dimension refers to feelings and sentiments in the presence
of pain, that is, how the patient feels emotionally due to pain. The sensitive dimension
encompasses both the quality and severity of pain. The evaluative dimension refers
to the global evaluation of the situation experienced by the patient and is strongly
influenced by previous painful experiences. Pain perceptions may overlap within the
same dimension, and a total score for each dimension is given by summing up all types
of pain perceptions. Table 4.1 also shows the neuropathic pain scale, which is used
for assessing neuropathy pain and may be particularly useful for assessing response to
therapies. The total neuropathy score is calculated as the sum of the possibilities, and
the cut-off value for the diagnosis of neuropathic pain is a total score of 4. The table
also shows information about pain outbreaks and the time in which pain gets worse.
There are other variables that we omitted from the table due to lack of space.
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Table 4.1: Patient data obtained at the first consultation. Mean, first and third quar-
tiles within age, McGill score, initial pain intensity, and pain perception dimension
scores.

Population A Population B

N 277 (43.89%) 354 (56.11%)

Sex (male) 110 (39.71%) 151 (42.65%)

Age, y 54.86 (46�64) 56.66 (45�60)

0�15 McGill score 7.21 (4�10) 5.75 (3�9)

0�10 intial pain intensity 6.66 (5�8) 4.80 (2�8)

Sensitive dimension 3.31 (1�5) 2.63 (1�4)

Burning 170 (61.4%) 188 (53.1%)

Painfull 131 (47.3%) 139 (39.3%)

Slapped 113 (40.8%) 115 (32.5%)

Throbbing 111 (40.1%) 104 (29.4%)

Stabbings 104 (37.5%) 96 (27.1%)

Electric shocks 100 (36.1%) 99 (27.9%)

Sharp 95 (34.3%) 102 (28.8%)

Spreads 87 (31.4%) 86 (24.3%)

Affective dimension 2.59 (1�3) 2.13 (1�3)

Tiring 209 (75.4%) 227 (64.1%)

Nauseous 186 (67.1%) 191 (53.9%)

Annoying 157 (56.7%) 166 (46.9%)

Stifling 89 (32.1%) 91 (25.7%)

Scary 74 (26.7%) 79 (22.3%)

Evaluative dimension 1.30 (1�2) 0.99 (1�1)

Unconfortable 260 (93.9%) 252 (71.2%)

Unberable 100 (36.1%) 100 (28.2%)

Neuropathic pain scale

Burning 193 (70.4%) 220 (62.7%)

Hypoesthesia to touch 143 (48.2%) 143 (40.7%)

Numbness 109 (39.8%) 101 (28.8%)

Pins and needles 107 (39.0%) 117 (33.3%)

Tingling 89 (32.5%) 97 (27.6%)

Electric shocks 85 (31.0%) 81 (23.1%)

Painful cold 46 (16.7%) 49 (14.0%)

Brushing 40 (14.6%) 37 (10.5%)

Itchiness 28 (10.2%) 26 (7.4%)

dn4-quant � 4 123 (44.9%) 120 (34.2%)

Duration of pain outbreaks

Seconds 8 (2.9%) 3 (0.9%)

Minutes 10 (3.6%) 17 (4.8%)

Hours 19 (6.9%) 16 (4.5%)

Days 2 (0.8%) 5 (1.4%)

Weeks 1 (0.4%) 3 (0.8%)

Months 6 (2.2%) 8 (2.3%)

Not specific duration 229 (83.6%) 299 (85.2%)

Prevalence of pain sensation

Daytime 9 (3.3%) 6 (1.7%)

Morning 4 (1.5%) 7 (2.0%)

Nocturnal 14 (5.1%) 17 (4.8%)

Afternoon 3 (1.1%) 6 (1.7%)

Not specific time 247 (89.2%) 318 (89.8%)

Figure 4.1 shows how often pain is reported in different areas of the human body.
Interestingly, areas on the right side of the body are more frequently reported by
patients in population B. The considered features enable a myriad of possibilities of
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Figure 4.1: (Color online) Areas associated with pain. Top � Areas in black are more
frequently reported by patients in population B than by patients in population A.
Bottom � Frequency in which each area is reported by patients in populations A and
B.

combining diverse aspects of pain relief while learning predictive models.
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Figure 4.2: (Color online) T-SNE visualization [van der Maaten, 2009] of the sampled
model space H

0. Each point represents a model x0. Models are placed according to
the probabilities assigned to patients so that models that assign similar probabilities
to the same patients are placed next to each other in the space (see Section 3.3). The
color indicates the average AUC value, and smaller points indicate less variance in the
corresponding model.

4.2 Setup

While sampling the model space, we randomly set the number of features that compose
each model. However, we assure no model has more than 15 features as a good com-
promise between interpretability and performance. Using this upper limit, we can test
the validity and feasibility of our work. Further, it is intended to build a questionnaire
to be applied by the doctor in the patient’s first consultation. Restricting the number
of features is also one way to limit the number of questions. Models are built using
SciKit-Learn implementations of XGBoost or Random Forests algorithms [Pedregosa
et al., 2011]. We sampled 150 000 models using the XGBoost algorithm and another
150 000 models using the Random Forests algorithm. To evaluate the performance of
the models was used the standard AUC (area under the ROC curve) measure [Hanley
and McNeil, 1982; Fawcett, 2006]. Five-fold cross-validation was conducted, and at
each run, four folds are used as the training set, and the remaining fold is used as the
test set. This case study also employed a separated validation set used to select the
best models. Lastly, we report the average AUC value over the five runs.

The average AUC values obtained by the all-in-one model were 0.648 for XGBoost
and 0.652 for Random Forests. Therefore, we consider a model as minimally performant
if its average AUC value is at least 0.650. It is necessary here to clarify exactly what is
meant by the all-in-one approach; we refer to XGBoost and Random Forests as all-in-
one approaches when we feed the model with all features. For instance, although it is
widely known that Random Forests implements some feature selection, yet all features



4. Case Study: Predicting the Evolution of Pain Relief 51

are supplied to the model. Conversely, a non-all-in-one approach would be the case
where just a subset of features is supplied.

The parameters used by the all-in-one model using learning algorithms XG-
Boost and Random Forests were the same used to sample the model space, and
were selected empirically. Specifically, for XGBoost we set <n_estimators=50,
subsample=0.6, learning_rate=0.1 and max_depth=10> and for Random Forest
we set <n_estimators=10 and max_depth=10>. The ommited parameters were set
with the default values.

While this performance threshold seems low, it greatly exceeds the estimated
physician performance at the first consultation, which is no higher than 0.438. We
consider the physician’s performance as being the known outcome of the latest con-
sultation. The close to the random performance of physicians at the first consultation
reveals how difficult this predictive task is. The 0.650 performance threshold resulted in
a sampled model space H

0 for XGBoost and another model space for Random Forests.
The XGBoost model space comprises 2 830 models out of the original 150 000 models
(1.9% of the models perform better than the all-in-one model). In contrast, the Ran-
dom Forests model space comprises 2 507 models (1.7% of the models perform better
than the all-in-one model). Figure 4.2 shows XGBoost and Random Forests model
spaces. Each point matches a model, and the size of the point indicates the variance
of the validation error. In addition, the color scale is associated with the performance
achieved by the model, with light colors performing best. Thus, in the figure, the
best models are shown as clearer and smaller points. The figure shows that the best
models are well scattered through the model space, indicating models with different
preferences but equally performant.

Additionally, we also carried out experiments with Tree-based Pipeline Optimiza-
tion Tool2 (TPOT). TPOT is a tool that optimizes the machine learning pipeline using
genetic programming. We set up the time limit for optimization as 24 hours, as this
is the approximate amount of time in our worst-case to run our approach. The aver-
age AUC obtained using VAS 30 as the label was 0.632. In this case, it was selected
the XGBoost classifier. Interestingly, for VAS 30, the best-selected machine learning
approach is a single model, even though TPOT can generate stacking setups.

4.2.1 Limitations

Currently, the main framework limitation is on the computing SHAP values. The
two tree-based learning algorithms used in this work (Random Forests and Gradi-

2
http://epistasislab.github.io/tpot/
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ent Boosted Trees) rely upon TreeSHAP. Whereas KernelSHAP is a model-agnostic
method to compute Shapley values, it can be slow and suffer from sampling variabil-
ity. By focusing specifically on trees, TreeSHAP computes local explanations based
on exact Shapley values in polynomial time [Lundberg et al., 2020]. Working with
models that are KernelSHAP reliant on computing local explanations is not feasible
yet, as KernelSHAP is two orders of magnitude slower than TreeSHAP. In addition,
computational costs are also inherent to the framework since approximately 150 000
models are generated.

Another limitation in our approach is the various parameter settings and their
interplay. Examples of parameters are the maximum number of features, the number
of models generated for each feature size, minimum AUC threshold, XGBoost model
parameters, Random Forest model parameters, and parameters to perform clustering.
We seek to adjust the parameters through empirical evaluations in our case study. At
the same time, we tried to sufficiently substantiate the choice of the approach’s specific
parameters, aiming to apply it to diverse problems.

4.2.2 A Note on Time Requirements

Although the time spent generating the ensembles does not influence the benefits shown
throughout the work, such as the increase of the AUC and reduced feature set, it can be
a critical factor in applying the technique in miscellaneous use cases. Almost the entire
runtime contribution comes from generating the model space with 150 000 sampled
models. As we increase the maximum number of features allowed, we can obtain
ensembles with improved performance. Conversely, it is also expected to increase the
computational cost. As interpretability is a crucial aspect of our work, we set the upper
limit to 15 features. The total time spent sampling the entire model space with an
upper limit of 15 features was 1353.78 minutes with XGBoost and only 249.01 minutes
with Random Forests. Both cases use VAS 30 label. Generating the ensemble from
the sampled model space takes less than 60 minutes for all configurations and learning
algorithms. The specifications related to the hardware are: Intel R� CoreTM i3-6100
CPU @ 3.70GHz, 16GB DDR3 1600 MT/s, and 256GB SSD. As the algorithms used
did not make use of the graphics card, we will omit the information. A more updated
and detailed description of computational costs along with hardware and software
specifications can be found in Appendix A.
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4.3 Explanatory Factors

We are interested in evaluating four criteria for diversity: predictions, probabilities,
features, and SHAP (explanatory factors). As the first step, we would like to measure
how such criteria are correlated to each other. Pearson correlation coefficient, also
known as Pearson’s r, is a standard measure of linear correlation between two sets of
data. However, it can not be used directly, as our data sets are of different dimensions.

Table 4.2 shows the dimensions for each criterion, considering an individual in-
stance. An instance has a dimension of 271 for both the probabilities and predictions
criteria. Comparatively, features and SHAP criteria result in a dimension of 332. In-
terestingly, when using the XGBoost learning algorithm, there are numerous SHAP
explanatory factors with zeroes, meaning these features did not influence the outcome.
Out of 332 features, 109 did not had any influence. Hence, the real dimension is 223.
Also, note that 271 is different from the total number of instances 632, as we considered
only predictions and probabilities from the instances with the true label 1.

Table 4.2: Criterion dimension for an individual instance.

Probabilities Predictions Features SHAP

271 271 332 332 (223)3

In order to estimate the correlation, we built an adjacency matrix from the model
space generated in Figure 4.2, filling in the matrix with the euclidean distance between
the models. With this approach, we can quantify whether the distance between two
models’ probabilities vector increases as the distance considering other criteria as pre-
dictions, features, and SHAP increases likewise. As a result, Figure 4.3 shows the
correlation matrix obtained from the model space using XGBoost and Random Forests
learning algorithms.

Interestingly, for the XGBoost learning algorithm, the SHAP explanatory factors
correlate more with predictions (0.75) than the probabilities with the prediction (0.66).
Indeed, the two most correlated criteria are SHAP explanatory factors and predictions.
It is also surprising that SHAP explanatory factors are more correlated with predictions
(0.75) and probabilities (0.44) than with features (0.23).

A similar trend can be observed considering the Random Forest learning algo-
rithm. SHAP explanatory factors are more similar with predictions (0.4) and prob-

3
For the XGBoost learning algorithm, some features do not influence the outcome. So, 223 is the

actual dimension if considering features influencing the outcome only.
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Figure 4.3: (Color online) Correlation matrix built using the adjacency matrix based
on different criteria. The left image is built from model space generated using the
XGBoost learning algorithm. The right image is built from model space generated
using Random Forests learning algorithm.

abilities (0.35) than with features (0.29). However, the most correlated criteria are
probabilities and predictions in this case, with a value of 0.58.

Figures 4.4 and 4.5 presents the histogram charts of different criteria and learning
algorithms. In particular, Figure 4.4 shows the histogram plots when using predictions
(Figures 4.4a and 4.4b) and probabilities (Figures 4.4c and 4.4d) criteria. Images on
the left use the XGBoost learning algorithm, while the right uses the Random Forest
learning algorithm. Regarding the learning algorithm, the generated plots are very
similar. Using probabilities criterion clearly results in a normal distribution.

Figure 4.5 presents the histogram plots employing features (Figures 4.5a and
4.5b) and SHAP explanatory factors (Figures 4.5c and 4.5d) criteria. Once again, the
histogram plot using features criterion is very similar regardless of the learning algo-
rithm. Interestingly, the SHAP explanatory factors are the only ones resulting in a
very different histogram plot. For the XGBoost learning algorithm, the generated his-
togram plot is a binomial distribution. In the histogram plot using the Random Forest
learning algorithm, the resulting plot is normal distribution, albeit not symmetric.

In summary, SHAP explanatory factors present the following benefits:

• It is more correlated to probabilities and predictions than features;

• It has a dimension size less than or equals the features criterion dimension, while
probabilities and predictions dimensions equal the number of instances. In gen-
eral, the number of instances surpasses the features by a large margin;

• It provides more knowledge than features criterion. Additionally to the informa-
tion on whether a feature is present, it estimates how much each feature con-
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(a) (b)

(c) (d)

Figure 4.4: (Color online) Histogram plotting using criteria probabilities and predic-
tions. Plots on the left, (a) and (c), make use of the XGBoost learning algorithm.
Plots on the right, (b) and (d), make use of the Random Forests learning algorithm.

tributed to the model outcome;

• It enables identifying features that, while being supplied to the models, are simply
ignored. These features can be disregarded, thus reducing the dimension.
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(a) (b)

(c) (d)

Figure 4.5: (Color online) Histogram plotting using criteria features and SHAP (ex-
planatory factors). Plots on the left, (a) and (c), make use of the XGBoost learning
algorithm. Plots on the right, (b) and (d), make use of the Random Forests learning
algorithm.

4.4 Relating Model Preferences and Explanatory
Factors

In order to answer RQ1, we embedded XGBoost and Random Forests models according
to their model preferences (i.e., probabilities they assign to the data points). Thus,
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models assigning similar probabilities to the same data points are placed next to each
other in the model space (as in Figure 4.2). Next, we clustered the model space using
different criteria and clustering algorithms. We employed Hierarchical clustering [Ward,
1963] and DBScan [Ester et al., 1996] algorithms, and all hyper-parameters were set
by maximizing the silhouette value considering the model preference space. These two
clustering algorithms represent two distinct ways to cluster data. The dendrogram is
a tree-based clustering algorithm that partitions the given data rather than the entire
instance space. On the other hand, DBScan is a density-based clustering connecting
points within certain distances thresholds only when satisfying a density criterion.

In this paragraph is presented the silhouette value formal definition obtained from
the book Machine Learning from Flach [2012]. For any data point xi, let d(xi, Dj)

denote the average distance of xi to the data points in cluster Dj, and let j(i) de-
note the index of the cluster that xi belongs to. Furthermore, let a(xi) = d(xi, Dj(i))

be the average distance of xi to the points in its own cluster Dj(i), and let b(xi) =

mink 6=j(i) d(xi, Dk) be the average distance to the points in its neighbouring cluster. We
would expect a(xi) to be considerably smaller than b(xi), but this cannot be guaran-
teed. So we can take the difference b(xi)�a(xi) as an indication of how ‘well-clustered’
xi is, and divide this by b(xi) to obtain a number less than or equal to 1. This leads
to the following definition:

s(xi) =
b(xi)� a(xi)

max (a(xi), b(xi))
(4.1)

The silhouette value measures how similar a data point is to its cluster (cohesion)
compared to other clusters (separation). The silhouette ranges from �1 to +1, where
a high value indicates that the data point is well matched to its cluster and poorly
matched to neighboring clusters. If most data points have a high value, then the
clustering configuration is appropriate. The silhouette value considered in this work is
the mean silhouette value over all samples.

Figure 4.6 shows 2D T-SNE visualization for the XGBoost model space after be-
ing clustered using different criteria. T-SNE was only used for the sake of visualization,
and all clusters were estimated in the original n�dimensional model space. Firstly, for
the sake of comparison, we clustered the model space using the predictions performed
by each model so that models that perform the same predictions for the same data
points are more likely to be associated with the same cluster. In this case, explanatory
factors were not used. While hierarchical clustering leads to cohesion, it lacks perfor-
mance in terms of separation. The opposite trend is observed for DBScan clusters.
Both Hierarchical clustering and DBScan achieved low silhouette values. Specifically,
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Hierarchical clustering achieved a 0.17 silhouette value, while DBScan achieved only a
0.01 silhouette value. The low silhouette values, especially for DBScan, may be due
to similar probabilities associated with opposite predictions. Small differences between
probabilities that are close to the threshold may lead to opposite predictions. Hence
models may be evaluated as similar in terms of model preference but different in terms
of their predictions.

Furthermore, for the sake of comparison, Figure 4.6 shows the XGBoost model
space clustered using the indexes of the features within each model. The purpose is to
evaluate to what extent a specific set of features may be associated with a particular
local structure in the data space. The problem with this clustering criterion (i.e., the
features within the model) is that it neglects that different features may be correlated.
Models may have similar preferences even if they are entirely different in terms of
their features. Again, this leads to poor clustering performance. Precisely, Hierarchical
clustering achieved a 0.05 silhouette value, while DBScan achieved only a 0.03 silhouette
value.

Finally, we evaluate our proposed approach of clustering the model space based
on the explanatory factors associated with each model. As detailed in Section 3.4, we
represent each model as a vector composed of the SHAP values associated with the
factors explaining the model decisions. Interestingly, clustering based on explanatory
factors results in groups with very high values of cohesion and separation, suggesting
a strong link between model preferences and model explanation. Another advantage
of clustering models as vectors of SHAP values is that the importance of each factor
is divided if the model contains correlated features. In particular, our approach avoids
a systematic instability in which similar models in terms of their preferences can have
very different explanations. Consequently, silhouette values are as high as 0.83 for
Hierarchical clustering and 0.95 for DBScan. The figure shows minor differences in
the configuration of groups obtained by both clustering algorithms. The data analysis
allows confirming the hypothesis defined at RQ1, considering the XGBoost model space,
as the high silhouette values for both clustering algorithms indicate a relationship
between model preferences and model explanation.

Similarly, Figure 4.7 shows 2D T-SNE visualization for the Random Forests model
space after being clustered using different criteria. Similar trend was observed. Again,
for the sake of comparison, we clustered the model space using the predictions per-
formed by each model. In this case, again, both Hierarchical clustering and DBScan
achieved low silhouette values. Specifically, Hierarchical clustering achieved a 0.06 sil-
houette value, while DBScan achieved a -0.33 silhouette value. Clustering the model
space using the distance between the feature sets within each model leads to poor co-
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Predictions - Dendogram clustering Predictions - DBScan clustering

Features - Hierarchical clustering Features - DBScan clustering

SHAP values - Hierarchical clustering SHAP values - DBScan clustering

Figure 4.6: (Color online) T-SNE visualization of the model space after being clus-
tered using different clustering algorithms and different criteria. Different colors mark
different clusters. All clustering parameters were selected by maximizing the silhou-
ette value in the model preference space. Models were built using Extreme Gradient
Boosting (aka XGBoost). Silhouette values: Predictions = (0.17, 0.01); Features =
(0.05, 0.03); SHAP values = (0.83, 0.95), respectively for Dendrogram clustering and
DBScan clustering.

hesion and separation. Hierarchical clustering achieved a 0.04 silhouette value, while
DBScan achieved a 0.06 silhouette value. Again, clustering based on explanatory fac-
tors results in groups with very high values of cohesion and separation. Silhouette
values are as high as 0.87 for Hierarchical clustering and 0.98 for DBScan. Therefore,
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our answer to RQ1 is also positive considering the Random Forests model space, as the
high silhouette values for both clustering algorithms indicate a relationship between
model preferences and model explanation.

Predictions - Hierarchical clustering Predictions - DBScan clustering

Features - Hierarchical clustering Features - DBScan clustering

SHAP values - Hierarchical clustering SHAP values - DBScan clustering

Figure 4.7: (Color online) T-SNE visualization of the model space after being clustered
using different clustering algorithms and different criteria. Different colors mark dif-
ferent clusters. All clustering parameters were selected by maximizing the silhouette
value in the model preference space. Models were built using Random Forests. Silhou-
ette values: Predictions = (0.06, -0.33); Features = (0.04, 0.06); SHAP values = (0.87,
0.98), respectively for Dendrogram clustering and DBScan clustering.
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Figure 4.8: (Color online) Explanation factors (viewed as SHAP summary plots) asso-
ciated with prototype models. Models were built using XGBoost.

4.5 Backbone Structure, Explanatory Factors and
Diversity

In order to answer RQ2, we inspected the prototype models within each cluster in the
XGBoost model space. We focus on clusters based on explanation vectors produced by
DBScan. Figure 4.8 shows SHAP summary plots 4 associated with prototype models,
giving an overview of which features are most important for a model. For instance, the
first plot (top, leftmost) shows that a high initial pain intensity increases the chances of
significant pain reduction at the end of the treatment. Typically, the most important

4
These summary plots show the SHAP values of every feature for every data point. In each plot,

features are sorted by the sum of SHAP value magnitudes over all data points. The color represents

the feature value.
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feature within a model is a backbone feature, such as a pain dimension or a pain
scale. Then the model includes features that are somehow related to the backbone
feature, such as a specific location or a particular medication. As a result, models
differ significantly in terms of their explanatory factors. Diversity becomes clear as
we inspect the prototype models, as each model employs a set of features that is very
different from the features used by the other prototype models. Specifically, there
are 41 distinct features within the eight prototype models, and only nine features are
present in the two models.

The number of 41 unique features represents, precisely, 9.29% of the total number
of features (332 in total). It should also be noted that the performance increased
despite a notable reduction in the number of features. The reduced number of features
yields many benefits, with one crucial benefit in medical area applications: it narrows
the gap between ethics and its use in real-life situations. Combining with the SHAP
technique allows the doctor to visualize the most critical factors contributing to the
model outcome. Otherwise, the contributions would be shared with many features with
the entire set of features, making it very difficult to understand how the algorithm’s
decision is being made. When working with a small subset of features, SHAP works
much better.

Figure 4.9 shows the SHAP decision plots of two prototype models previously
shown in Figure 4.8. SHAP decision plots show how complex models arrive at their
predictions. Each line presents a model decision path given an input. This different
view is effective mainly when many important features are involved. As can be seen,
models using different features are different ways to achieve the prediction.
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Figure 4.9: (Color online) SHAP decision plots for two models are shown in Figure 4.8.
Left � True positives (line) vs False negatives (dashed line). Right � True negatives
(line) vs False positives (dashed in line).

We also inspected the prototype models within each cluster in the Random Forests
model space. We focus on clusters based on explanation vectors produced by DBScan.
Figure 4.10 shows SHAP summary plots associated with prototype models, giving an
overview of which features are most important for a model. Again, models differ greatly
depending on pain dimension, location of the pain, pain duration, and medication.
Diversity is also observed in these prototype models. Specifically, there are 45 distinct
features within the ten prototype models, from which six features are present in two
models and only two features are present in three models. Thus, our answer to RQ2 is
positive considering the XGBoost and the Random Forests model spaces, as prototype
models differ significantly in terms of the features being used.

As the models were selected by maximizing explanation diversity, the number of
shared features is expected to be small. The most relevant features for each prototype
can be obtained directly from their SHAP values (i.e., the higher the SHAP value, the
more important is the feature). The most relevant features within the final model would
be the combination of the most relevant features within its prototype models. Using
VAS30 as the label, XGBoost as the learning algorithm, and DBScan as the clustering
algorithm, the most relevant features of each prototype model are: pain intensity,
evaluative dimension, affective, DN4 quantitative, evaluative dimension uncomfortable,
McGill and sensitive dimension.
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Figure 4.10: (Color online) Explanation factors (viewed as SHAP summary plots)
associated with prototype models. Models were built using Random Forests.

4.6 Ensemble Performance

The next set of experiments is devoted to answering RQ3. Table 4.3 shows AUC values
for different ensemble configurations using VAS 30 label. The ensemble’s performance
is compared to the performance of the best local model in the model space and the all-
in-one approach. Different ensembles configurations achieved AUC values that range
from 0.68 to 0.78. Ensembles obtained from Random Forests models provide gains up
to 4.17% compared to the best local model and up to 15.03% compared to the all-in-one



4. Case Study: Predicting the Evolution of Pain Relief 65

Table 4.3: Ensemble performance for different clustering criteria and clustering algo-
rithms using VAS 30 label. Baseline AUC values for the best local model for XGBoost
was 0.71 and for Random Forests 0.72. Baseline AUC values for the all-in-one approach
for XGBoost was 0.648 and for Random Forests 0.652.

XGBoost Random Forests
Criterion Clustering AUC Gain Gain AUC Gain Gain

Best all-in-one Best all-in-one

Predictions DBScan 0.73 2.82% 12.65% 0.68 -5.55% 4.29%
Predictions Hierarchical 0.73 2.82% 12.65% 0.73 1.39% 11.96%
Feature values DBScan 0.71 � 9.57% 0.70 -2.78% 7.36%
Feature values Hierarchical 0.72 1.51% 11.11% 0.74 2.78% 13.50%
Explanations DBScan 0.78 9.86% 20.37% 0.75 4.17% 15.03%
Explanations Hierarchical 0.77 8.45% 18.83% 0.75 4.17% 15.03%

approach. However, for some ensemble configurations, the performance deteriorated.
Ensembles obtained from XGBoost models were more effective, providing gains up to
9.86% compared to the best local model and up to 20.37% compared to the all-in-one
approach.

For the VAS 50 and GIC labels, similar experiments of our proposal are provided
in Appendix B. In summary, the results also showed a marked improvement in the
performance of the generated ensemble for all considered labels.

Our proposed learning ensembles by clustering the model space using explana-
tory factors were always compelling, providing significant gains despite the ensemble
configuration. Thus, our answer to RQ3 is definitely positive.

4.7 Comparison with Biclustering Performance

The set of experiments in this section is devoted to answering RQ4. For this, we
consider as baseline the BENCH (Biclustering-driven ENsemble of Classifiers) method
proposed in Pansombut et al. [2011], which constructs an ensemble of classifiers through
concurrent feature and data point selection guided by biclustering. Figure 4.11 shows
ROC curves for BENCH, XGBoost+SHAP with DBScan and Random Forests+SHAP
with DBScan. ED-Ensemble outperform BENCH in all ranges of false positive and
true positive rates. We performed Welch’s t-tests with p = 0.01, and both ensemble
configurations are statistically different from BENCH, and thus our answer to RQ4 is
also positive.

The following chapter presents an in-depth analysis of the accuracy metric for the
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Figure 4.11: (Color online) ROC curve comparing different ensemble approaches.

proposed ensemble under different conditions. The total error is decomposed into bias
plus variance, allowing to determine the ensemble accuracy and total error behavior.



Chapter 5

Bias and Variance Analysis

This chapter analyzes the bias and variance of the constructed ED-Ensemble, charac-
terizing and describing their behavior under different conditions. We begin with the
formulation of our problem in terms of bias and variance, providing a decomposition
of the error using these two terms. Next, a setup is presented to define how the mea-
surements are obtained. Finally, we discuss our evaluation procedure and report the
results. In particular, our study aim to answer the following research questions:

RQ1: The generated ED-Ensemble provides consistent improvements under the eval-
uation metric AUC. Do the improvements extend to accuracy? How do bias
and variance perform in the generated ensemble contrasting with the all-in-one
alternative?

RQ2: How does the number of features impact the performance error?

RQ3: The learning algorithms used in this work are based on the techniques of bag-
ging and boosting. It is well known that bagging reduces the total error mainly
through the decrease in variance error, while boosting reduces the total error
mainly through the decrease in bias error. How do bias and variance behave in
the ensemble in comparison to the base models?

RQ4: Are the proposed ED-Ensembles consistently superior in performance to ran-
domly generated ensembles?

5.1 Problem definition

Several are the factors that interact with the construction of good ensembles. Notably,
the relationship between diversity and accuracy of the base learners is recognized as

67
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one key factor [Valentini and Dietterich, 2004; Kuncheva et al., 2001]. This thesis
presented an approach to construct ensembles based on the selection of base models
using diversity criteria in competing explanations. Now, we turn our attention to
present an analysis of the accuracy of the base learner and formed ensemble. The
decomposed error analysis of the base models and the generated ensemble lets us clarify
how the improvement is achieved.

The bias plus variance decomposition provides a way to analyze the total error
under the terms bias, variance, and an intrinsic target noise. The three terms can be
defined as:

Bias: measures the difference between the average predictions made by a model (ŷ)
over distinct training sets of a given size and the true predictions (y).

Variance: measures how much the predictions vary around the average for different
training sets of the given size.

Intrinsic noise: is the noise independent of the learning algorithm.

Originally formulated for least-squares regression, the decomposition is a well-
established analysis borrowed from statistics. Conversely, given some implications,
this decomposition can not be automatically extended for the classification problem.
There are a few works along the years with proposals in decomposition for 0-1 loss,
notably Kohavi and Wolpert [1996] and Domingos [2000].

5.2 Bias and Variance Decomposition for Mean
Squared Error

This section will address the bias plus variance decomposition considering the error
function Mean Squared Error (MSE). The decomposition presented in this section is
inspired by the decomposition presented by Vijayakumar [2007].

Let f(x) = f be the true function we want to approximate. Next, the dataset for
training is defined as D = {(x1, t1), (x2, t2), . . . (xN , tN)} where t = f + ✏ and E[✏] = 0.
Given D, we train a model to approximate the function f by y = g(x, w). The mean-
squared error is:

MSE =
1

N

NX

i=1

(ti � yi)
2 (5.1)
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To assess the model’s effectiveness, we want to know the expectation of the MSE
if we test the model on arbitrary many test points drawn from the unknown function.

E[MSE] = E[
1

N

NX

i=1

(ti � yi)
2] =

1

N

NX

i=1

E[(ti � yi)
2] (5.2)

Following:

E[(ti � yi)
2] = E[(ti � fi + fi � yi)

2]

= E[(ti � fi)
2] + E[(fi � yi)

2] + 2E[(ti � fi)(fi � yi)]

= E[(ti � fi)
2] + E[(fi � yi)

2] + 2E[(fi � yi)(ti � fi)]

= E[✏2] + E[(fi � yi)
2] + 2(E[fiti]� E[f 2

i ]� E[yiti] + E[yifi])

(5.3)

We start with an augmentation trick. Note E[fiti] = f 2
i since f is deterministic

and E[ti] = fi. Next, E[f 2
i ] = f 2

i since f is deterministic. Finally, E[yiti] = E[yi(fi +

✏)] = E[yifi + yi✏] = E[yifi] + 0. The last term is zero because the noise in the infinite
test set over which we take the expectation is probabilistically independent of the model
prediction. Thus the last term in the expectation above cancels to zero. Proceeding
from the above-mentioned:

E[(ti � yi)
2] = E[✏2] + E[(fi � yi)

2] + 2(E[fiti]� E[f 2
i ]� E[yiti] + E[yifi])

= E[✏2] + E[(fi � yi)
2] + 2(f 2

i � f 2
i � E[yifi] + E[yifi])

= E[✏2] + E[(fi � yi)
2] + 2(◆◆f

2
i � ◆◆f

2
i �⇠⇠⇠⇠E[yifi] +⇠⇠⇠⇠⇠E[yifi])

= E[✏2] + E[(fi � yi)
2]

(5.4)

Hence we can decompose MSE in expectation into the variance of the noise and
the expectation between the true function and the predicted values. This last term can
be further decomposed with the same augmentation trick as before:

E[(fi � yi)
2] = E[(fi � E[yi] + E[yi]� yi)

2]

= E[(fi � E[yi])
2] + E[(E[yi]� yi)

2] + 2E[(fi � E[yi])(E[yi]� yi)]

= E[(fi � E[yi])
2] + E[(E[yi]� yi)

2] + 2E[(E[yi]� yi)(fi � E[yi])]

= bias2 + V ar[yi] + 2(E[fiE[yi]]� E[E[yi]
2]� E[yifi] + E[yiE[yi]])

(5.5)
Note E[fiE[yi]] = fiE[yi] since f is deterministic and E[E[z]] = z. Next,

E[E[yi]2] = E[yi]2 since E[E[z]] = z. Following, E[yifi] = fiE[yi] and E[yiE[yi]] =
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E[yi]2. Thus, the last term in the expectation above cancels to zero.

E[(fi � yi)
2] = bias2 + V ar[yi] + 2(E[fiE[yi]]� E[E[yi]

2]� E[yifi] + E[yiE[yi]])

= bias2 + V ar[yi] + 2(fiE[yi]� E[yi]
2
� fiE[yi] + E[yi]

2)

= bias2 + V ar[yi] + 2(⇠⇠⇠⇠fiE[yi]�����E[yi]
2
�⇠⇠⇠⇠fiE[yi] +����E[yi]

2)

= bias2 + V ar[yi]
(5.6)

Thus the decomposition of the MSE in expectation becomes:

E[(ti � yi)
2] = V ar[noise] + bias2 + V ar[yi] (5.7)

Note that the noise is intrinsic to the data, and it is not possible to be minimized.
Thus, to minimize the total error in MSE, it is possible to minimize the bias or variance.
However, this is not a trivial task. There is a tradeoff between the two terms, and they
are negatively correlated. In general, when we decrease the error in one term, the error
in the other term increases. Consider two extreme cases: if we create a model that
ignores the input and always provides the same output, it will have zero variance error.
However, the bias error will dominate the total error (underfit). On the other hand,
if we specialize our model to achieve 100% of accuracy in the training set, this model
will overfit the data and be pretty unstable once we change the input dataset. In this
case, our model would not be able to generalize well (overfit).

As stated before, the decomposition presented in this section cannot be automat-
ically extended to the standard classification setting, as in this context, the 0/1 loss
function is usually applied, and bias and variance are not purely additive [Valentini
and Dietterich, 2004]. In the next section, we present a decomposition adaptation
specifically for the 0/1 loss, based on the work of Domingos [2000].

5.3 Measuring Bias and Variance with Limited
Data Set

This section presents a step-by-step procedure for measuring bias and variance for the
0/1 loss when working with limited data sets. The method is inspired in the work
presented by Valentini and Dietterich [2004] and Domingos [2000]. While some works
also provide a decomposition approach, such as Kohavi and Wolpert [1996], we opted
to Domingos [2000] because its decomposition is based on a consistent definition of
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bias and variance. In addition, the authors investigate loss variations as a function of
bias and variance, preventing some of the common shortcomings.

Considering the difficulty of estimating noise in real-world data sets, we assume
the noise-free case. Hence, given the original definition ti = fi + ✏ and as in the noise-
free case ✏ = 0, so from now on we make the assumption ti = fi until the rest of this
chapter.

We start with a data set S. First, we generate B bootstrap replicates of S (for
this experiment we set B = 200): S1, . . . , SB. Given a learning algorithm L, we induce
a model on each of the generated Sb replicates to obtain hypothesis fb = L(Sb). Let
Tb = S \ Sb be the data points that do not appear in Sb (out of bag points). We are
going to use this set of instances to evaluate the bias-variance decomposition of the
error.

For each data point x, we have now observed corresponding value t and several
predictions y1, . . . , yK , where K = |{Tb | x 2 Tb, 1  b  B}|, K  B and on the
average K ⇠ B

3 , because about 1/3 of the predictors is not trained on a specific input
x. The value K can vary depending on the example x, as each bootstrap is randomly
generated.

We are working with a binary classification problem. Let C be the set of classes, in
this problem C = {1,�1} representing, respectively, the positive and negative classes.
In order to compute the predictions for a two-class classification problem, we can define

p1(k) =
1

K

BX

b=1

||(x 2 Tb) and (fb(x) = 1)||, (5.8)

p�1(k) =
1

K

BX

b=1

||(x 2 Tb) and (fb(x) = �1)||. (5.9)

The main prediction ym(x) corresponds to the mode of the multiple predictions
fb:

ym = argmax(p1, p�1) (5.10)

The bias B(x) is the loss of the main prediction relative to the true prediction
and can be calculated as:

B(x) =

8
<

:
1 if ym 6= t

0 if ym = t
(5.11)

The variance V (x) is the average loss of the predictions relative to the main
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prediction:

V (x) =
1

K

BX

b=1

k (x 2 Tb) and (ym 6= fb(x)) k . (5.12)

The variance associated with the model prediction follows one of the two cases:
a) it can be beneficial and lead to a decrease in total error, or b) it can increase
the error. The difference between the two cases is whether the variance occurs in a
biased prediction (prediction different from the true value) or an unbiased prediction
(prediction equal to the true value). The unbiased variance Vu(x) and the biased

variance Vb(x) can be calculated as:

Vu(x) =
1

K

BX

b=1

k (x 2 Tb) and (B(x) = 0) and (ym 6= fb(x)) k (5.13)

Vb(x) =
1

K

BX

b=1

k (x 2 Tb) and (B(x) = 1) and (ym 6= fb(x)) k (5.14)

We will denote as net variance the real impact of variance in the error. It is
denoted as:

Vn(x) = Vu(x)� Vb(x) (5.15)

With the assumption of the noise-free case, the average loss on the example x,
the error ED(x) is calculated by a simple algebraic sum of bias, unbiased and biased
variance:

ED(x) = B(x) + Vu(x)� Vb(x) (5.16)

Until this point, we introduced formulas to estimate the decomposition terms for
a single instance x. Henceforth, we can calculate the average bias, average variance,

average variance unbiased, average variance biased and average net variance averaging
over the entire set of examples of the test set T = {(xj, tj)}rj=1.

The average quantities are

Average bias:

Ex[B(x)] =
1

r

rX

j=1

B(xj) (5.17)
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Average variance:

Ex[V (x)] =
1

r

rX

j=1

V (xj)

=
1

rK

rX

j=1

BX

b=1

k (xj 2 Tb) and (ym 6= fb(xj)) k

(5.18)

Average unbiased variance:

Ex[Vu(x)] =
1

r

rX

j=1

Vu(xj)

=
1

rK

rX

j=1

BX

b=1

k (xj 2 Tb) and (B(x) = 0) and (ym 6= fb(xj)) k

(5.19)

Average biased variance:

Ex[Vb(x)] =
1

r

rX

j=1

Vb(xj)

=
1

rK

rX

j=1

BX

b=1

k (xj 2 Tb) and (B(x) = 1) and (ym 6= fb(xj)) k

(5.20)

Average net variance:

Ex[Vn(x)] =
1

r

rX

j=1

Vn(xj)

=
1

r

rX

j=1

(Vu(xj)� Vb(xj))

(5.21)

Lastly, average loss on all examples :

Ex[L(t, y)] = Ex[B(x)] + Ex[Vu(x)]� Ex[Vb(x)]. (5.22)
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5.4 Accuracy Performance

In order to answer RQ1, we measured the accuracy performance of our ensemble ap-
proach under different conditions. In our first experiment, presented in Table 5.1, we
measured the average error (and consequently the accuracy) followed by the decom-
position of the error in bias and variance. This experiment aimed to compare how
the error components are summed up in the all-in-one approach compared to the ED-
Ensemble approach. For both cases it was used XGBoost and Random Forests as
learning algorithms.

Table 5.1: Bias plus variance decomposition estimates of the average error calculated
using XGBoost and Random Forests as the learning algorithms under different ap-
proaches.

(a) Estimates of the decomposed average error using the all-in-one approach.

Learning Algorithm Accuracy Bias Net variance Var. unbiased Var. biased

XGBoost 0.5837 0.3993 0.017 0.1289 0.1119
Random Forests 0.5811 0.3961 0.0229 0.1667 0.1438

(b) Estimates of the decomposed average error using the ED-Ensemble approach. Parameter
number of features = 15.

Learning Algorithm Accuracy Bias Net variance Var. unbiased Var. biased

XGBoost 0.6544 0.3077 0.0379 0.1124 0.0745
Random Forests 0.6429 0.3191 0.038 0.1306 0.0926

From the results using XGBoost learning algorithm, it was obtained the accuracy
performance of 0.5837 when using the all-in-one approach and 0.6544 when using the
ED-Ensemble approach. It represents a relative increase of 12.11% in the accuracy
performance using the later approach. Furthermore, the average error is defined as the
sum of bias and net variance. Most of the error in all-in-one and ensemble approaches
came from the bias component; 0.3993 out of 0.4163 and 0.3077 out of 0.3456. The
performance gain obtained in the ensemble was entirely due to the reduction of the
bias error. The variance error in the ensemble has slightly increased, albeit negligible.

Similar results were obtained with Random Forests learning algorithm. The all-in-
one approach obtained an accuracy performance of 0.5811 and the ensemble approach
of 0.6429, representing an increase of 10.63%. The similarities extended on how this
improvement was achieved. Most of the errors in the all-in-one approach come from the
bias error. The ensemble approach significantly reduced this bias error (from 0.3961
to 0.3191) while maintaining the variance error low (from 0.0229 to 0.038).
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Lastly, answering RQ1, we can claim that the improvements provided by the
ensemble do extend to accuracy. We markedly increased the accuracy in the resulting
ED-Ensemble, even when considering two different learning algorithms, XGBoost and
Random Forest. Moreover, nearly the entire contribution comes from reducing the bias
error. Thus, the ED-Ensemble approach can learn more complex relationships present
in the data (reduced bias error) while not overfitting (stable variance error).

5.5 Measuring the Impact of the Number of
Features

In the experiments carried out throughout our work, we empirically fixed in 15 the
number of features as a good compromise between the ensemble performance, time
spent to generate the ensemble, and explainability.

In the research question RQ2, we are interested in modeling how changing the
number of features impacts the average error and its decomposed components bias
and variance. To answer this question, we performed multiple experiments varying the
number of features from 3 to 15. Hence, for a fixed number of features equal to 3, the
ensemble was generated using the ED-Ensemble approach with the restriction that no
base model could have more than 3 features. We set the minimum number of features
to 3 because that was the smallest size that ensured the generation of the ED-Ensemble
across all experiments. For each generated ensemble, the accuracy, average error, bias,
and variance were estimated. Similar experiments were performed using XGBoost and
Random Forests as learning algorithms.

The results are presented in Tables 5.2 and 5.3. We have opted to omit the accu-
racy metric, exhibiting the average error instead. In Table 5.2 the learning algorithm
XGBoost was used. It is possible to observe that the average error decreases as we
increase the number of features. In other words, as we increase the number of fea-
tures, the accuracy increases. The average error has a decrease from 0.3762 to 0.3456,
representing a decrease of 8.13%.

Interestingly, the net variance for the minimum and the maximum number of
features goes from 0.0390 to 0.0379 and can be regarded as stable. Conversely, the
bias error value decreases from 0.3372 to 0.3077 and accounts for the decrease in the
final average error. As a result, based on the experiments, our answer to RQ2 when
employing XGBoost as a learning algorithm is that as we increase the number of
features allowed in base models, we attain a decrease in bias error while the variance
error remains stable. This behavior results in an ensemble with a lower average error
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(therefore a superior accuracy).

Table 5.2: Bias plus variance decomposition estimates of the average error in ED-
Ensembles models using XGBoost as learning algorithm.

# of features Avg. Error Bias Net variance Var. unbiased Var. biased

3 0.3762 0.3372 0.0390 0.1221 0.0831
4 0.3811 0.3633 0.0178 0.1078 0.0900
5 0.3743 0.3470 0.0273 0.1175 0.0902
6 0.3711 0.3535 0.0176 0.1131 0.0955
7 0.3661 0.3404 0.0257 0.1168 0.0911
8 0.3682 0.3257 0.0425 0.1268 0.0843
9 0.3714 0.3601 0.0113 0.1092 0.0979
10 0.3721 0.3552 0.0169 0.1106 0.0937
11 0.3718 0.3421 0.0297 0.1182 0.0885
12 0.3718 0.3584 0.0134 0.1112 0.0978
13 0.3578 0.3028 0.0550 0.1313 0.0763
14 0.3560 0.3257 0.0303 0.1132 0.0829
15 0.3456 0.3077 0.0379 0.1124 0.0745

Similarly, in Table 5.3 we present the same set of experiments although employing
Random Forests as learning algorithms. The results obtained follow the same trend
presented by the XGBoost learning algorithm. Bias accounts for most of the total
error. Also, given the slight absolute difference in net variance error from 0.0297 to
0.038, and that it represents a small contribution to the total error, it can be said
stable in the total error contribution. On the other hand, the bias error experiences
a significant reduction from 0.3650 to 0.3191. The average error varies from 0.3947

to 0.3571, representing a reduction of 9.52%. As a result, our answer to RQ2 when
considering Random Forests learning algorithm is that there is a clear trend in, as we
increase the number of features, the bias error is reduced and consequently the average
error. This improvement is possible as the net variance error remains small regardless
of altering the number of features.

Figures 5.1 and 5.2 presents the experiments results in line plots as an alternative
for easy viewing. It is possible to note a decreasing trend in average error and average
bias, while the other components do not show a trend.
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Table 5.3: Bias plus variance decomposition estimates of the average error in ED-
Ensembles models using Random Forests as the learning algorithm.

# of features Avg. Error Bias Net variance Var. unbiased Var. biased

3 0.3947 0.3650 0.0297 0.1225 0.0928
4 0.3639 0.3470 0.0169 0.1115 0.0946
5 0.3656 0.3273 0.0383 0.1290 0.0907
6 0.3656 0.3339 0.0317 0.1225 0.0908
7 0.3613 0.3339 0.0274 0.1192 0.0918
8 0.3535 0.3175 0.0360 0.1249 0.0889
9 0.3565 0.3224 0.0341 0.1190 0.0849
10 0.3535 0.3159 0.0376 0.1244 0.0868
11 0.3535 0.3159 0.0376 0.1244 0.0868
12 0.3536 0.3191 0.0345 0.1291 0.0946
13 0.3536 0.3191 0.0345 0.1291 0.0946
14 0.3598 0.3241 0.0357 0.1252 0.0895
15 0.3571 0.3191 0.038 0.1306 0.0926

Figure 5.1: Bias plus variance decomposition of the average error in the generated
ED-Ensemble when varying the number of features from 3 to 15. Using XGBoost as
the learning algorithm.
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Figure 5.2: Bias plus variance decomposition of the average error in the generated ED-
Ensemble when varying the number of features from 3 to 15. Using Random Forests
as the learning algorithm.

5.6 Ensemble and Base Models Compared

One key aspect of ensemble evaluation is to analyze the generated ensemble and the
base models that make it up. This analysis meets with the research question RQ3. In
order to answer RQ3, we set up an experiment in which we measured the average error,
along with its decomposition into bias plus variance, and averaged the metrics of all
base models belonging to the same ensemble. The outcome is a single representative
base model calculated from the base models comprising the ensemble.

Again, the metrics are calculated varying the number of features parameter from
3 to 15. The results are presented in Table 5.4 and Table 5.5 for learning algorithms
XGBoost and Random Forests respectively.

For the XGBoost learning algorithm presented in Table 5.4, bias error had a slight
decrease. Conversely, net variance error suffered a small increment as we increased the
number of features. In percentage, the bias error had a decrease of 4.45%, while the net
variance error had an increase of 31.52%, considering the first and last measurement.
Although the percentage increase in net variance error represents a big leap, caution
should be taken with its analysis. First, net variance error represents a small portion
of the total error, and even with a significant increase, bias error still accounts for most
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of the error. Second, there is no apparent indication of an uptrend in the net variance
error. The lack of uptrend is supported considering that the other three net variance
errors are greater than the last measurement. Virtually stable, the average error varied
from 0.4068 (considering 3 features) to 0.3953 (considering 15 features) representing a
decrease in the total error of about 2.83% only.

Table 5.4: Bias plus variance decomposition estimates of the ED-Ensemble base models
using XGBoost as learning algorithm.

# of features Avg. Error Bias Net variance Var. unbiased Var. biased

3 0.4068 0.3884 0.0184 0.0971 0.0787
4 0.4097 0.3993 0.0104 0.0971 0.0867
5 0.4039 0.3860 0.0179 0.0973 0.0794
6 0.4023 0.3816 0.0207 0.0998 0.0791
7 0.4016 0.3839 0.0177 0.0992 0.0815
8 0.4037 0.3744 0.0293 0.1061 0.0768
9 0.4083 0.3752 0.0331 0.1130 0.0799
10 0.4088 0.3775 0.0313 0.1113 0.0800
11 0.4107 0.3903 0.0204 0.1099 0.0895
12 0.4069 0.3888 0.0181 0.1056 0.0875
13 0.4032 0.3802 0.0230 0.1116 0.0886
14 0.3997 0.3774 0.0223 0.1121 0.0898
15 0.3953 0.3711 0.0242 0.1103 0.0861

Similar analysis is performed for the Random Forests learning algorithm, pre-
sented in Table 5.5. Again, we observe that most of the error comes from the bias
error. The bias error presented an increase from 0.3863 to 0.3950, about 2.25%. On
the other hand, the net variance error experienced a decrease from 0.0261 to 0.0110
(decrease of 57.87%) as we increased the number of features parameter. The total error
decreased from 0.4124 to 0.4060 (1.55%). Still, the decrease was possible because the
gains from the net variance error exceeded the loss in the bias error.

Finally, in Table 5.6 we present the information of how much the ensemble im-
proves over the base models. We opted to display the accuracy performance instead
of the average error to simplify visualization since a higher percentage implies a more
remarkable improvement.

For the XGBoost learning algorithm, the improvement performance accuracy
provided by the ensemble over the average base models goes from 5.16% to 8.22%. The
gap performance steadily increases as the number of features also increases, showing an
upward trending. The trend represents an appealing aspect of the obtained ensemble.
As we increase the number of features allowed, we expect better base models and,
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Table 5.5: Bias plus variance decomposition estimates of the ED-Ensemble base models
using Random Forests as learning algorithm.

# of features Avg. Error Bias Net variance Var. unbiased Var. biased

3 0.4124 0.3863 0.0261 0.1059 0.0798
4 0.4133 0.3983 0.0150 0.1060 0.0091
5 0.4115 0.4096 0.0019 0.1032 0.1013
6 0.4102 0.4008 0.0094 0.1061 0.0967
7 0.4039 0.3890 0.0149 0.1002 0.0853
8 0.4008 0.3778 0.0230 0.1094 0.0864
9 0.4021 0.3819 0.0202 0.1083 0.0881
10 0.3984 0.3755 0.0229 0.1078 0.0849
11 0.3984 0.3755 0.0229 0.1078 0.0849
12 0.4024 0.3813 0.0211 0.1124 0.0913
13 0.4024 0.3813 0.0211 0.1124 0.0913
14 0.4077 0.3968 0.0109 0.1141 0.1032
15 0.4060 0.3950 0.0110 0.1123 0.1013

consequently, better ensembles. However, we also observed a surprising increase in the
performance gap between the ensemble and averaged base models.

Similar measures were obtained using Random Forests learning algorithm. It
is possible to observe that as the number of features increases, the improvement gap
between the ensemble and base models also increases in an upward trend. When we set
the number of features to 15, we reach a gap of 8.23%. Although this is not the most
significant gap, it is the second-biggest gap. We observe the gap performance varying
from 3.01% to 8.42%.

Thus, answering RQ3, we observe an increase in net variance error offset along
with a significant decrease in bias error in the generated ensemble. Furthermore, the
improvement in ensemble performance is not solely due to better-selected base mod-
els. As the number of features increases, the improvement gap between ensemble and
base models also increases. Lastly, we can state that the generated ensembles can con-
sistently learn more complex relationships in data, significantly decreasing bias error
while keeping the net variance error at a low level.

5.7 ED-Ensemble compared with Randomly
Generated Ensemble

Given a set of models, if we assume that these models are performant, will any combina-
tion of models generate ensembles consistently better than the base models? This issue
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Table 5.6: Compared accuracy and percentage gain of the ED-Ensemble built with the
average accuracy of the base models.

XGBoost Random Forests
# of features Accuracy Gain Accuracy Gain

3 0.6238 5.16% 0.6053 3.01%
4 0.6189 4.84% 0.6361 8.42%
5 0.6257 4.97% 0.6344 7.80%
6 0.6289 5.22% 0.6344 7.56%
7 0.6339 5.93% 0.6387 7.15%
8 0.6318 5.95% 0.6465 7.89%
9 0.6286 6.24% 0.6435 7.63%
10 0.6279 6.21% 0.6465 7.46%
11 0.6282 6.60% 0.6465 7.46%
12 0.6282 5.92% 0.6464 8.17%
13 0.6422 7.61% 0.6464 8.17%
14 0.6440 7.28% 0.6402 8.09%
15 0.6544 8.22% 0.6429 8.23%

is in line with the research question RQ4. We are now interested in showing that the
models our ED-Ensemble chooses to create the ensemble are not selected by chance. In
other words, the base models selected are individually chosen by an objective criterion
to increase diversity.

In order to answer RQ4, we must compare ED-Ensembles with randomly gener-
ated ensembles. Following the practices adopted in this chapter, we tested these two
combinations methods to construct ensembles varying the number of features param-
eter from 3 to 15.

Results for XGBoost learning algorithm are presented in Table 5.7 and Table 5.8.
Table 5.7 presents the average error and its decomposition in bias plus variance of
randomly generated ensembles. These ensembles are constructed by randomly selecting
k models with a fixed n number of features to compose the ensemble. The variable
k, indicating the number of base models selected, is obtained when we generate the
ED-ensemble. We opted to replicate this number in the randomly generated ensemble
to provide a fairer comparison. From the results, no upward or downward trend can
be observed. Table 5.8 presents the average performance of the base models that are
part of the randomly generated ensemble. Again, no trend can be observed for any of
the related metrics when increasing the number of features.

Similarly, we replicated the experiments for Random Forests learning algorithm.
The average error and its decomposition in bias plus variance of the randomly generated
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Table 5.7: Bias plus variance decomposition estimates of the average error in ensemble
models using XGBoost as the learning algorithm. This ensemble is built by generating
randomly base models given a size of features.

# of features Avg. Error Bias Net variance Var. unbiased Var. biased

3 0.4328 0.4326 0.0002 0.1026 0.1024
4 0.4450 0.4446 0.0004 0.1045 0.1041
5 0.4354 0.4299 0.0055 0.1204 0.1149
6 0.4347 0.4343 0.0004 0.0792 0.0788
7 0.4467 0.4441 0.0026 0.0884 0.0858
8 0.4413 0.4375 0.0038 0.1033 0.0995
9 0.4402 0.437 0.0032 0.1231 0.1199
10 0.4309 0.4212 0.0097 0.1021 0.0924
11 0.4712 0.4539 0.0173 0.1305 0.1132
12 0.4362 0.4332 0.0030 0.1139 0.1109
13 0.4272 0.4173 0.0099 0.1194 0.1095
14 0.4289 0.4288 0.0001 0.1054 0.1053
15 0.4404 0.4359 0.0045 0.1138 0.1093

Table 5.8: Bias plus variance decomposition estimates of the average error in ensemble
base models using XGBoost as the learning algorithm. This ensemble is built by
generating randomly base models given a size of features.

# of features Avg. Error Bias Net variance Var. unbiased Var. biased

3 0.4380 0.4330 0.0050 0.1027 0.0977
4 0.4559 0.4521 0.0038 0.1056 0.1018
5 0.4402 0.4308 0.0094 0.1013 0.0919
6 0.4385 0.4414 0.0029 0.0822 0.0793
7 0.4443 0.4383 0.0051 0.0912 0.0861
8 0.4439 0.4334 0.0106 0.0943 0.0837
9 0.4405 0.4283 0.0122 0.1060 0.0938
10 0.4375 0.4354 0.0021 0.0866 0.0845
11 0.4424 0.4376 0.0048 0.0962 0.0914
12 0.4397 0.4350 0.0047 0.1033 0.0986
13 0.4411 0.4383 0.0028 0.1075 0.1047
14 0.4397 0.4371 0.0026 0.0998 0.0972
15 0.4423 0.4368 0.0055 0.0997 0.0942

ensemble are shown in Table 5.9. The table shows no clear trend for any of the related
metrics when varying the number of features. In Table 5.10 are presented the data for
the base models that are part of the ensemble. Again, there is no clear trend for any
of the related metrics.

Finally, to summarize how the randomly generated ensembles are compared with
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Table 5.9: Bias plus variance decomposition estimates of the average error in ensem-
ble models using Random Forests as learning algorithm. This ensemble is built by
generating randomly base models given a size of features.

# of features Avg. Error Bias Net variance Var. unbiased Var. biased

3 0.4361 0.4354 0.0007 0.1093 0.1086
4 0.4233 0.4124 0.0109 0.1161 0.1052
5 0.4365 0.4266 0.0099 0.1166 0.1067
6 0.4385 0.4375 0.0010 0.1070 0.1060
7 0.4415 0.4386 0.0029 0.1177 0.1148
8 0.4356 0.4299 0.0057 0.1227 0.1170
9 0.4476 0.4430 0.0046 0.1198 0.1152
10 0.4297 0.4266 0.0031 0.1227 0.1196
11 0.4293 0.4212 0.0081 0.1172 0.1091
12 0.4308 0.4294 0.0014 0.1079 0.1065
13 0.4331 0.4304 0.0027 0.1097 0.1070
14 0.4311 0.4266 0.0045 0.1186 0.1141
15 0.4204 0.4148 0.0056 0.1193 0.1137

Table 5.10: Bias plus variance decomposition estimates of the average error in ensemble
base models using Random Forests as learning algorithm. This ensemble is built by
generating randomly base models given a size of features.

# of features Avg. Error Bias Net variance Var. unbiased Var. biased

3 0.4437 0.4422 0.0015 0.0977 0.0962
4 0.4372 0.4247 0.0125 0.1092 0.0967
5 0.4419 0.4406 0.0013 0.1033 0.1020
6 0.4412 0.4394 0.0018 0.0910 0.0892
7 0.4529 0.4484 0.0045 0.1175 0.1130
8 0.4443 0.4432 0.0011 0.1141 0.1130
9 0.4423 0.4371 0.0052 0.0994 0.0942
10 0.4380 0.4373 0.0007 0.1059 0.1052
11 0.4353 0.4351 0.0002 0.0964 0.0962
12 0.4419 0.4308 0.0111 0.1055 0.0944
13 0.4383 0.4353 0.0030 0.0930 0.0900
14 0.4390 0.4333 0.0057 0.0993 0.0936
15 0.4344 0.4308 0.0036 0.1031 0.0995
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Table 5.11: Compared accuracy and percentage gain of the ensemble built using ran-
domly choosen models of a fixed feature size over the accuracy obtained in all-in-one
approach.

XGBoost Random Forests
# of features Accuracy Gain Accuracy Gain

3 0.5672 -2.82% 0.5639 -2.95%
4 0.5550 -4.91% 0.5767 -0.75%
5 0.5646 -3.27% 0.5635 -3.02%
6 0.5653 -3.15% 0.5615 -3.36%
7 0.5533 -5.21% 0.5585 -3.88%
8 0.5587 -4.28% 0.5644 -2.87%
9 0.5598 -4.09% 0.5524 -4.93%
10 0.5691 -2.50% 0.5703 -1.85%
11 0.5288 -9.40% 0.5707 -1.78%
12 0.5638 -3.41% 0.5692 -2.04%
13 0.5728 -1.86% 0.5669 -2.44%
14 0.5711 -2.16% 0.5689 -2.09%
15 0.5596 -4.13% 0.5796 -0.25%

their respective ensembles, we present in Table 5.11 the gain provided by the ensembles.
As can be seen, for both learning algorithms, the ensembles have poorer performance.
As a result, we can answer RQ4 as positive. Yes, the ED-Ensembles proved to be
consistently superior to randomly generated ensembles under all conditions tested.

5.8 Discussion

In summary, one of the strategies to improve the performance of a learning algorithm
consists of developing methods to reduce the variance error or bias error in the induced
model. Since these two notions are contrasting, improvement in one term almost always
implies worsening in the other term. Hence, the most common approach is to reduce
the error in only one of the terms. Our proposal fits in reducing variance by using
small models, i.e., models supplied with a small subset of features. Concurrently, we
seek to reduce bias through the combination of the diversified models. The accuracy
gain achieved shows that the strategy used allowed the total error to be successfully
reduced. We maintained the variance error in low levels while markedly reducing the
bias error despite using two substantially different learning algorithms as base models.
By their nature, these learning algorithms are on opposite sides in how they seek to
provide a combination of models with better performance.



Chapter 6

Model-Explanations as
Meta-Features in Longitudinal Data

This chapter presents a novel approach that enhances traditional machine learning
approaches in longitudinal data. Until now, we have made use of information gathered
on the first consultation only. However, the standard protocol for a patient typically
comprises sequential appointments. Firstly, we describe the proposed approach to
use previous models’ explanations to function as a temporal memory in longitudinal
data. We aim to evaluate the proposed approach in the chronic pain dataset adopted
throughout this work. Each patient is associated with a set of consultations. We show
that using the additional information (until now disregarded) enables improving the
model performance. Next, we discuss our evaluation procedure and analyze the results
obtained. In particular, our study aims to answer the following research questions:

RQ1 How effective are prediction models combining fresh data from the current con-
sultation with SHAP meta-features from the previous consultation?

RQ2 Are SHAP meta-features extracted from previous models more discriminating
for pain relief than features from previous consultations?

RQ3 What are the fundamentals that allow SHAP meta-features to leverage predictive
performance?

The remainder of this chapter is divided into four main sections. Section 6.1
describes the foundation for longitudinal data. Section 6.2 is devoted to the novel
proposed approach to using models’ explanations meta-features as memory in longitu-
dinal data. Section 6.3 details the chronic pain data used in this chapter, being a set
of related datasets with a varying number of consultations obtained from the original
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data. Section 6.4 discuss the main results obtained from the experiments. Finally,
Section 6.5 details the findings of this research.

6.1 Longitudinal data

In longitudinal data, repeated observations are made over time for the same sub-
ject [Fitzmaurice et al., 2012; Hedeker and Gibbons, 2006]. This structure creates
correlations as observations for the same subject are dependent [Speiser, 2021]. Unlike
cross-sectional data, which is collected at a specific point, longitudinal data is collected
for the same subject over an extended period. Unlike time series, where repeated ob-
servations are collected over time for a single subject, in longitudinal data, repeated
observations are collected for multiple subjects hierarchically, and observations may be
unevenly spaced in time. Longitudinal data is present in different areas such as med-
ical field [Zhao et al., 2019; Konerman et al., 2015], econometrics [Frees et al., 1999;
Heckman and Walker, 1990], and social sciences [Stenberg, 2011].

The analysis of longitudinal data is traditionally performed using statistical meth-
ods [Verbeke et al., 2014; Perveen et al., 2020]. These methods, however, require many
assumptions about the data in order to work correctly and machine learning methods,
on the other hand, require considerably fewer assumptions about the data. One of
the few assumptions is that the random variables are independent and identically dis-
tributed. However, longitudinal data from patient reports may violate this assumption
as observations are correlated for the same patient but independent across different
patients [Sela and Simonoff, 2012; Hu, 2021; Ngufor et al., 2019].

Fortunately, there are some alternatives to enable the use of machine learning
methods in longitudinal data modeling. A simple adaptation is to collect a set of
variables in the initial period (baseline consultation) and build models using this data
alone. The main limitation of this approach, however, is that a substantial amount of
information is simply ignored. Another alternative consists of building aggregate fea-
tures on top of the longitudinal data, such as mean, minimum, maximum, and standard
deviation. The work by Zhao et al. [2019] compares the scenarios using baseline data
versus incorporating the longitudinal data by aggregating features for cardiovascular
disease event prediction. The experiments showed that including aggregate features
performs better when compared to baseline data only. Hence, for the accurate mod-
eling of longitudinal data, the application of machine learning methods requires some
adaptation, either algorithm-wise or data-wise.

In the following section, we introduce a novel machine learning method to longi-
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tudinal data to predict the evolution of pain relief. Our approach uses previous models’
explanations (i.e., feature importances) to function as a temporal memory on longitu-
dinal data. Precisely, to predict the output at consultation c for a patient, we extract
feature importances [Lundberg and Lee, 2017] from a model trained on the data up
to consultation c� 1 and use these explanations as memory meta-features about pre-
vious iterations. The intuition is that our approach improves the current model by
remembering important information from previous consultations.

6.2 Feature Importances as Memory Meta-Features
in Longitudinal Data

We begin by presenting the basic concepts and notations that are necessary to describe
our method. Notations are shown in Table 6.1.

Table 6.1: Notations used in this chapter.

Name Description

n number of subjects
d number of features
ti number of consultations associated with subject i
xi ti ⇥ d matrix of data for subject i
yi true output for subject i
sj n⇥ d matrix of SHAP values at consultation j
f j model trained on consultation j

Longitudinal data involves repeated observations for the same patient at different
times (i.e., consultations with the doctor) at intervals that may not be equidistant. At
each time point, a variety of information about the patient’s characteristics is collected.
These characteristics may represent information that will not change during treatment
(e.g., gender and race) or information that is likely to change over time (e.g., pain inten-
sity, characteristics, and medications). In general, in problems involving longitudinal
data, the output is associated with each point in time. Nevertheless, in our particular
case, we have a single outcome at the end of treatment. To overcome this limitation,
we will obtain the label from the patient’s lastest consultation with the doctor and
then replicate this label for all the points belonging to the same patient. The idea is
that at each time point, we will try to predict whether, at the end of the treatment,
the patient will be able to experience pain relief of at least 30% (i.e., VAS-30). The
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prediction model outputs the probability of achieving such an improvement, which can
easily be converted to a binary output.

Formally, labeled longitudinal data can be represented by a set of pairs
{(xi, yi)}n(i=1), where xi 2 Rti⇥d (i.e., each instance xi is a vector of real numbers
of size d that is repeatedly observed at ti times). Furthermore, yi 2 [0, 1] is the final
treatment result for the ith patient. For the same patient, repeated observations are
made at different points in time ti = {t1, t2, ..., tk}. We will identify a point in time

as a superscript index. Thus, for a single patient xi, we have xi =
h
x1
i x2

i . . . xk
i

iT
,

where each xj
i is a multidimensional feature vector. Features include the 78 question-

naire options along with demographic and socioeconomic information, resulting in a
total of 332 features each visit.

6.2.1 Model-Explanations as Memory

The intuition we explore in order to learn an effective prediction model for pain relief
is based on the following rationale:

• Memorize important information as meta-features from previous consultations.
This information comprises key aspects of a specific patient.

• Combine it with fresh information from the current consultation.

We have used SHAP values as meta-features extracted from previous consulta-
tions in order to gather important features acting as a data-level temporal memory in
longitudinal data. Consider the dataset {(xi, yi)}ni=1, where xi 2 Rti⇥d. First, we learn
an ED-Ensemble f 1 on data from the first consultation, t = 1, such that f 1(x1, y) = ŷ1.
The generated ensemble predicts, with only the information from the first consulta-
tion, whether the patient will experience a significant reduction in pain at the end of
treatment.

Next, we extract the SHAP values/features, s1, from this model, where s1 2 Rn⇥d.
We will use the extracted SHAP values as meta-features at time t = 2. At the second
consultation, we will consider the current questionnaire data in addition to SHAP
values, s1. Thus, we will learn another ED-Ensemble, such that f 2(x2

[ s1, y) = ŷ2.
The process continues for the number of consultations performed.

Algorithm 2 presents our proposed algorithm EXP-MF (model-EXPlanations as
Meta-Features) for predicting the evolution of pain relief when considering c consulta-
tions with the doctor. Figure 6.1 illustrates a step-by-step of the process considering
two consecutive consultations. Our method starts with an ED-Ensemble being trained
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on data from consultation i. Next, SHAP values are extracted from the prediction
model and the extracted SHAP values are joined with data from consultation i + 1.
Finally, another prediction model is learned from this new data.

Algorithm 2 EXP-MF in Longitudinal Data
Input: (X, y): labeled longitudinal dataset, c: number of consultations to consider.
Output: A prediction model taking into account c consultations.

1: i 1;
2: Learn f i(xi, y); . Learn an ED-Ensemble using data from consultation 1
3: si  extract SHAP meta-features from f i(xi, y);
4: while i < c do

5: Learn f i+1(xi+1
[ si, y); . Learn an ED-Ensemble using fresh data from

consultation i+ 1 and SHAP from previous consultation i
6: si+1

 extract SHAP meta-features from f i+1(xi+1
[ si, y);

7: i i+ 1; . Next consultation
8: end while

9: return f i(xi
[ si�1, y);

SHAP meta-
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+ Explanation-
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Figure 6.1: Diagram with the step-by-step of the proposed approach considering two
consecutive consultations i and i+1. In Step 1, we train an ED-Ensemble on data from
consultation i. In Step 2, we extract SHAP features from the ensemble constructed
and join them with data from consultation i + 1. Finally, in Step 3, we train a new
ED-Ensemble on the combined dataset. The resulting model can make predictions
using the information from consultations i and i+ 1.

Figure 6.2 shows the complete process considering multiple consecutive consul-
tations. For the same patient, each consultation can generate a prediction. Thus, it
is possible to generate multiple predictions for the same patient. It is expected that
confidence in the prediction will increase with each additional consultation.
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Figure 6.2: Illustration of the proposed method considering multiple sequential con-
sultations. It starts by training an ED-Ensemble on the first consultation. From this
model, it is extracted the model’s feature importance (SHAP), and this data is for-
warded to the next visit. A new ED-Ensemble is built at the second visit using the
complete second consultation data combined with the previously extracted SHAP. This
process repeats as more consultations are considered.

6.3 Chronic Pain Data

Data consists of attributes extracted from patients’ self-reports gathered at multiple
consultations with the doctor. Our models aim to predict whether the patient will, at
the end of the treatment, experience a significant reduction in pain. Specifically, an
overall reduction of pain intensity by 30% (aka, VAS 30) is assessed. The ground truth
labels are obtained by calculating the difference in pain intensities reported in the first
and last consultation and then replicated to all data points for the same patient.

We consider the same chronic pain data used until now in this thesis. However,
the approach proposed in this chapter requires some data manipulation, as we often
select patients with a minimum number of consultations. Thus, we have derived many
related datasets from the original dataset.

Table 6.2 shows patients information segmented by the number of consultations.
It outlines the three dimensions of pain perception. Additionally, it presents the neuro-
pathic pain scale, which is used for assessing neuropathic pain and may be particularly
useful for assessing response to therapies. The total neuropathy score is calculated as
the sum of the possibilities, and the cut-off value for the diagnosis of neuropathic pain
is a total score of 4.
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Table 6.2: Part of the patient perception dimension scores data obtained at each con-
sultation. Mean, first and third quartiles within age, McGill score, initial pain intensity,
and pain perception dimension scores. Here we consider the VAS 30 label and pain
characteristics are not mutually exclusive. Pain characteristics are not mutually exclu-
sive.

Consultations
1 2 3 4 5

Treatment was effective

n 112 (42.26%) 112 (42.26%) 56 (42.11%) 33 (40.74%) 25 (43.1%)

Sex (male) 42 (37.5%) 42 (37.5%) 18 (32.14%) 10 (30.3%) 7 (28%)

Age, y 54.88 54.88 53.88 50.97 50.88

(47.75�65) (47.75�65) (46.75�65.25) (42�61) (42�62)

0�15 McGill score 7.08 5.52 7.29 7.3 9.56

(4.0�10.25) (3�9) (4�11.25) (4�11) (7�12)

0�10 pain intensity 6.16 (5�8) 4.71 (2�8) 5.48 (3.75�8) 4.27 (2�7) 5.28 (3�8)

Sensory dimension 3.44 (1�6) 2.68 (1�4.25) 3.62 (1�6) 4 (2�6) 4.88 (3�7)

Affective dimension 2.48 (1�4) 1.81 (1�3) 2.43 (1�4) 2.24 (1�3) 3.36 (2�4)

Evaluative dimension 1.16 (1�2) 1.03 (1�1) 1.23 (1�2) 1.06 (1�1) 1.32 (1�2)

Neurophatic pain scale

Burning 76 (67.86%) 69 (61.61%) 36 (64.29%) 21 (63.64%) 17 (68%)

Hypoesthesia to touch 37 (33.04%) 24 (42.86%) 39 (47.56%) 9 (27.27%) 11 (44%)

Numbness 49 (43.75%) 35 (31.35%) 21 (37.5%) 13 (39.39%) 16 (64%)

Pins and needles 39 (34.82%) 27 (24.11%) 17 (30.36%) 7 (21.21%) 13 (52%)

Tingling 37 (33.04%) 36 (32.14%) 23 (41.07%) 9 (27.27%) 12 (48%)

Electric shocks 35 (31.25%) 27 (24.11%) 17 (30.36%) 11 (33.33%) 12 (48%)

Painful cold 19 (16.96%) 20 (17.89%) 15 (26.79%) 8 (24.24%) 7 (28%)

Brushing 13 (11.61%) 15 (13.39%) 14 (25.0%) 8 (24.24%) 9 (36%)

Treatment was not effective

n 153 (57.74%) 153 (57.74%) 77 (57.89%) 48 (59.26%) 33 (56.9%)

Sex (male) 66 (43.14%) 66 (43.14%) 30 (38.95%) 17 (35.42%) 8 (24.24%)

Age, y 56.16 56.16 55.23 52.77 50.91

(47�65) (47�65) (48�65) (42.25�64.25) (39�62)

0�15 McGill score 6.58 6.51 7.75 7.88 8.33

(4�10) (3�10) (4�11) (3.75�11.25) (6�11)

0�10 pain intensity 5.78 (4�8) 5.95 (4�8) 5.9 (4�8) 5.31 (3.75�8) 5.85 (4�8)

Sensory dimension 2.99 (1�5) 2.94 (1�5) 3.86 (1�6) 4.04 (1.75�6) 4.48 (2�7)

Affective dimension 2.48 (1�4) 2.37 (1�4) 2.65 (1�4) 2.24 (1�3) 2.55 (1�4)

Evaluative dimension 1.16 (1�2) 1.2 (1�2) 1.25 (1�2) 1.06 (1�1) 1.3 (1�2)

Neurophatic pain scale

Burning 116 (75.82%) 114 (74.51%) 59 (76.62%) 35 (72.92%) 21 (63.64%)

Hypoesthesia to touch 63(41.18%) 42(37.17%) 29 (37.66%) 18(37.5%) 10 (30.3%)

Numbness 51 (33.33%) 55 (35.95%) 37 (48.05%) 20 (41.67%) 16 (48.48%)

Pins and needles 47 (30.72%) 58 (37.91%) 25 (32.47%) 16 (33.33%) 9 (27.27%)

Tingling 58 (37.91%) 58 (37.91%) 37 (48.05%) 23 (47.92%) 20 (60.61%)

Electric shocks 42 (27.45%) 39 (25.49%) 26 (33.77%) 15 (31.25%) 13 (39.39%)

Painful cold 35 (22.88%) 25 (16.34%) 15 (19.48%) 10 (20.83%) 8 (24.24%)

Brushing 24 (15.69%) 21 (13.73%) 13 (16.88%) 10 (20.83%) 12 (36.36%)

We always consider the occurrence of an additional consultation, which is the one
we wish to predict. Thus, the description of the third consultation refers to patients
with at least four consultations with the doctor. Intuitively, making use of a minimum
number of visits, we aim to predict with a high degree of confidence whether the patient
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will respond positively to standard treatment for chronic pain. As expected, increasing
the number of consultations decreases the number of patients attending. Hence, 133
patients followed at least four consultations, 81 patients at least five consultations, and
58 patients at least six consultations. As the number of consultations increases, it also
increases the percentage of patients for whom the treatment was effective. Interestingly,
women became more prevalent.

6.4 Experimental Setup

TreeSHAP requires a trained model in order to compute SHAP values. As previously
discussed, these SHAP values are used as features in posterior iterations/consultations.
As the model is trained using labels, it is important to clarify that labels on the training
set are not included on a posterior validation set via SHAP values. Instead, SHAP
values are extracted from the current validation set (not from the training set) and
transferred to the next training set as features. More specifically, we conducted five-
fold cross-validation in longitudinal data, i.e., we arranged the patients into five folds
and at each run, four folds are used as training set, and the remaining fold is used as
test set. To evaluate the performance of the prediction models, we used the standard
AUC (area under the ROC curve) measure [Fawcett, 2006; Hanley and McNeil, 1982].
In all experiments we report the average AUC over the five runs.

For comparison purposes, we provide the following baseline algorithms:

• Prediction models trained using features from the first consultation only. This
configuration does not make use of any longitudinal information in the data.

• Prediction models trained using features from the current consultation only. This
configuration does not implement memory.

• Prediction models trained using features accumulated from all previous consulta-
tions. This is the stronger baseline as these models have access to features from
previous consultations.

In addition to the ED-Ensemble, we also evaluate general machine learning algo-
rithms, namely XGBoost and Random Forests. Table 6.3 shows the prediction perfor-
mance for the models used as baselines. Clearly, ED-Ensemble shows superior predic-
tion performance in all cases.

Accumulating features from previous consultations leads to better results. In
general, there is a gain in prediction performance as more features are included into
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the model (i.e., more consultations). The gain provided is quite significant. One major
drawback of systematically accumulating consultations is that it markedly increases
the total number of features. The data resulting from accumulating the first five
consultations has 1,660 features. Algorithms that are not robust to handle so many
features present limitations.

Table 6.3: AUC measures for prediction models used as baselines.

Data XGBoost Random Forests ED-Ensemble

Consultation 1 only 0.562 (±0.005) 0.497 (±0.080) 0.766 (±0.031)
Consultation 2 only 0.523 (±0.065) 0.526 (±0.101) 0.761 (±0.095)
Consultation 3 only 0.432 (±0.212) 0.326 (±0.134) 0.805 (±0.031)
Consultation 4 only 0.516 (±0.056) 0.463 (±0.066) 0.822 (±0.082)
Consultation 5 only 0.558 (±0.188) 0.520 (±0.117) 0.872 (±0.011)

Up to consultation 2 0.539 (±0.079) 0.504 (±0.035) 0.805 (±0.080)
Up to consultation 3 0.623 (±0.092) 0.472 (±0.153) 0.813 (±0.063)
Up to consultation 4 0.715 (±0.142) 0.589 (±0.238) 0.935 (±0.048)
Up to consultation 5 0.743 (±0.197) 0.639 (±0.189) 0.917 (±0.044)

6.4.1 Answering RQ1

Table 6.4 presents our main results. It shows the estimated AUC of prediction models
trained using our proposed method. For instance, the description “SHAP + Consulta-
tion 5” indicates that the prediction model was trained and evaluated using features
from the current consultation (i.e., consultation 5) combined with SHAP values as
meta-features extracted from a prediction model that was trained using data up to
consultation 4.

Table 6.4: AUC measures for prediction models trained using features of the current
consultation combined with the SHAP values extracted from the previous prediction
model.

Data XGBoost Random Forests ED-Ensemble

SHAP + Consultation 2 0.653 (±0.065) 0.666 (±0.090) 0.818 (±0.061)
SHAP + Consultation 3 0.822 (±0.011) 0.684 (±0.199) 0.903 (±0.056)
SHAP + Consultation 4 0.829 (±0.085) 0.733 (±0.085) 0.914 (±0.035)
SHAP + Consultation 5 0.843 (±0.045) 0.810 (±0.110) 0.945 (±0.053)

The results show that all prediction models present significant gains when increas-
ing the number of consultations granted. Comparing the relative gains over the base-
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lines using the first visit only with our approach using five consultations, our method
increased 50% relative to XGBoost, 62.98% relative to Random Forests, and 23.37%
relative to ED-Ensemble. The prediction model with the best absolute performance
obtained is the ED-Ensemble, achieving an AUC of 0.945.

Table 6.5 compares the prediction performance obtained by each algorithm using
the feature accumulation method and our proposed method. The gain is shown as the
percentage difference between the performance of the methods being compared. We
also performed Welch’s t-tests with p = 0.01. Our approach using XGBoost and Ran-
dom Forest learning algorithms is statistically different from the accumulation strategy
under all configurations. For the ED-Ensemble, the methods compared are statistically
different, except when considering up to 5 consultations. Ten of the twelve comparisons
performed were verified positive for our method. For one configuration, our approach
was poorer, and for one configuration, there was no statistical difference. For the ten
positive cases, the gain achieved ranged from 1.61% to 44.91%. Thus, EXP-MF pre-
sented as a pretty effective method, taking into account XGBoost and Random Forest
learning algorithms. The higher accuracy with ED-Ensemble in both strategies indi-
cates that the algorithm by nature is capable of selecting only the essential information
from previous consultations. Also, ED-Ensemble is robust to dimensionality increase.

Table 6.5: Gains in prediction performance provided by our method when compared
with accumulating features.

Data XGBoost Random Forests ED-Ensemble
Gain Gain Gain

Consultation 2 +21.15% +31.14% +1.61%
Consultation 3 +31.94% +44.91% +11.07%
Consultation 4 +15.94% +24.44% �2.24%
Consultation 5 +13.45% +26.76% +3.05%

In addition to the observed increase in prediction performance, another benefit
provided by our proposed method is to avoid a significant rise in the number of fea-
tures within the prediction model. Models built using only features from the current
consultation employ 332 features, regardless of the consultation. Models built using
concatenated features utilize 332 features for the first consultation and 1,660 for the
fifth consultation. Finally, our method on the fifth consultation uses 60 features only,
52 of which were unique. Our approach varies the number of features between visits
since the SHAP importance meta-features size depends on how many features have
been selected by the ED-Ensemble algorithm.
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6.4.2 Answering RQ2

We aim to evaluate whether the SHAP values extracted from previous consultations
are more discriminative than features from previous consultations.

We create datasets combining the strategies of accumulating consultation and
SHAP values as meta-features from previous consultations (i.e., memory). These gen-
erated datasets are used to train the Random Forest and XGBoost models. Next,
we estimate the SHAP summary plot from these models, thus obtaining insight into
which features each model considers most important. We want to verify whether the
SHAP values as meta-features of previous consultations or the previous consultations
themselves are considered more discriminating by the respective models.

The summary plot presents a global overview on the importance of features and
measures. The resulting plot has the following characteristics: each row corresponds
to a factor and has as many dots as patients; a dot represents the value of the corre-
sponding factor for a patient; red dots indicate that the factor assumes a high value for
the corresponding patient and blue dots indicate that the factor assumes a low value;
the vertical line shows whether the impact of a factor increased the prediction (i.e., the
dot is on the right size) or decreased it (i.e., the dot is on the left side); and factors
impacting most the model prediction appear on the top of the plot.

Figures 6.3 and 6.4 displays the summary plot of the Random Forest and XGBoost
models for distinct datasets. Each plot corresponds to a specific dataset in both figures:
the first plot is the dataset with the first two concatenated consultations plus the SHAP
values as meta-features extracted from the first consultation. The second plot has the
first three concatenated consultations plus the SHAP values as meta-features extracted
from the model trained up to the second consultation, and so on. Considering the high
quantity of features in the dataset, we decided to present only the five most important
features for better visualization.

Each feature can fit in one category: feature with information about current con-
sultation, feature with information about previous consultation, or meta-feature with
previous explanatory factor (SHAP value). In this experiment, we added suffixes to
their names in order to differentiate the features. The suffix ‘_t{n}’, where 1  n  5,
indicates the consultation in which the feature was obtained. Thus, in Figure 6.3, in
the first plot, we have the feature intensity_t1 specifying that the feature intensity

was obtained in consultation 1. Since information from the first two consultations is
considered in this first plot, we have that t1 refers to a previous consultation. On the
other hand, in Figure 6.4, also in the first plot we have the feature intensity_t2. Sim-
ilarly, this graph deals with the first two consultations, and thus this feature contains
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information about the fresh current consultation.
Another suffix used distinguishes whether the variable is a meta-feature with

SHAP value extracted from previous queries. It is described by ‘_m{k}_shap’, where
0  k  b. The variable b represents the number of base models that make up the
ensemble generated by the ED-ensemble algorithm. For instance, in the first plot
in Figure 6.3, the feature intensity_m0_shap is a meta-feature with SHAP value
extracted from the feature intensity obtained from the base model 0 of the gener-
ated ED-ensemble. When we consider two consultations, an ED-ensemble is generated
with the data from the first consultation, and we extract SHAP values for each base
model composing the ensemble. In particular, this ensemble is composed of 7 base
models, identified from 0 to 6. Therefore, the SHAP value intensity_m0_shap is ob-
tained from the base model identified as 0. Similarly, in the same graph, the variable
mcgill_m3_shap is a meta-feature with the SHAP value extracted from the variable
mcgill obtained from the base model 3 of the generated ED-ensemble. When consid-
ering more consultations, concatenation of this suffix may occur. Thus, in the second
plot in Figure 6.3, we have the variable intensity_m3_shap_m2_shap. We must read
it from right to left to correctly analyze this feature. Thus, considering that we are
using the information from three consultations, the meta-feature has the SHAP values
extracted from model 2 of the ED-ensemble generated under the previous consultations
(consultations 1 and 2). In turn, during the processing of the first two consultations,
this meta-feature was extracted from the SHAP values extracted from the base model
3 of the ED-ensemble generated under the previous consultations (consultation 1).
Therefore, we can observe that a meta-feature obtained from consultation 1 data can
be carried into later consultations. The number of suffixes allows us to identify when
the meta-feature was originally estimated.

In Figure 6.3, of the 20 most important features for the Random Forest model,
17 are SHAP values as meta-features extracted from previous models. Three features
are features from previous consultations, and no information about the current consul-
tation is used. Hence, Random Forest does not make use of any raw data from prior
consultation. In Figure 6.4, by contrast, when considering the XGBoost model, 15
SHAP values as meta-features are among the most critical. One feature is information
from current consultation, and four features are from previous consultations.
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Figure 6.3: (Color online) A set of summary plots showing only the five most important
features extracted from Random Forest models. Each plot represents the maximum
amount of consultations used. The first plot uses up to two consultations. The dataset
was constructed from the concatenation of the first two consultations, combined with
SHAP values as meta-features obtained from a model trained on the first consultation
only. The second plot considers up to three consultations, the fourth plot is four
consultations, and the last plot is five consultations.
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Figure 6.4: (Color online) A set of summary plots showing only the five most impor-
tant features extracted from XGBoost models. Each plot represents the maximum
amount of consultations used. The first plot uses up to two consultations. The dataset
was constructed from the concatenation of the first two consultations, combined with
SHAP values as meta-features obtained from a model trained on the first consulta-
tion only. The second plot considers up to three consultations, the fourth plot is four
consultations, and the last plot is five consultations.

It is remarkable that this proportion of previous’ models importance features is
achieved. The more consultations considered, the more features are incorporated into
the generated dataset. For each additional consultation, just over 300 features are
included. For instance, when five consultations are considered, we have 1,697 features.
Of this total, 1,660 features refer to previous and current consultations and only 37
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SHAP values as meta-features from earlier consultations. That is, about 2.23% of the
features are SHAP values as meta-features.

Finally, to answer question RQ2, we affirmatively state that SHAP meta-features
have a more significant impact on models than the prior information itself. When
considering more consultations, more features are added. Yet, looking at the top
five features more critically, most models regarded the SHAP meta-features as most
impactful. This strongly indicates that SHAP meta-features add more knowledge than
the value itself. The next question concerns the knowledge incorporated.

6.4.3 Answering RQ3

In order to answer research question RQ3, we will study the gain from replacing infor-
mation from the previous visit with its SHAP.

Two hundred and sixty-five patients that make up the data set have at least
three visits. Amidst the 332 variables in the first visit, one of the most important is
the variable intensity. The variable intensity represents the degree of pain reported
by the patient and consists of an integer that takes on values in the range 0 to 10. It
will be the variable we will analyze. Figure 6.5a presents a histogram correlating the
number of patients distributed over each intensity value. The mean of the variable is
5.93 (±3.05). As can be seen, the highest intensity values are 7 and 8, also the only
ones to exceed the forty-patient threshold.

The SHAP values extracted from the variable intensity, here called by the variable
intensity_m0_shap, have different behavior from the original variable. Figure 6.5b
presents a histogram correlating the number of patients distributed over the meta-
features SHAP obtained from intensity values at the first consultation. Firstly, it can
be seen that the data is distributed over a much larger number than 11 possible values.
Precisely, all the values generated are unique, with mean 2.51e� 18 (±1.363).

Figure 6.6 shows the histogram plot of the SHAP values extracted from feature
intensity with value 7 at first consultation. It is interesting to note that the same
original values have even been mapped to negative values. Precisely, there are 41
patients with intensity 7 at consultation 1. Using only the information from the first
consultation, the ED-ensemble trained on this data can predict 24 of these patients
correctly and 17 incorrectly.

Figures 6.7, 6.8 and 6.9 comparatively present force plots using only consultation
1 (first plot), and using consultation 2 plus SHAP values as meta-features from the
previous consultation (second plot). The force plot exhibits how each variable and its
respective value contributes to the prediction. Visually, only the largest contributions
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(a) (b)

Figure 6.5: (Color online) Histogram plot showing the distribution of intensity values
and SHAP values extracted from the same intensity values. Figure 6.5a presents the
intensity values at the first consultation, and Figure 6.5b presents the SHAP values
extracted from intensity values at the first consultation.

are displayed. When using the information from the second consultation plus SHAP
values as meta-features from the previous consultation, of the 17 incorrectly predicted
at consultation 1, 8 are correctly predicted at consultation 2.

In the first plot in Figure 6.7, the variable intensity with value 7 has a positive
contribution in the final output. The force plot exhibits how each variable and its
respective value contributes to the prediction. Visually, only the largest contributions
are displayed. In this case, the largest contribution to the final output emerges from
the variable Pain loc: right foot, with value 0. Our model predicts a probability, and
we aim to obtain a classification. We will assume a class 1 if output � 0.5, and class
0 otherwise. The expected (correct) output for this instance is class 0, and thus the
model prediction is incorrect. In the second graph in Figure 6.7, instead of using the
intensity variable from consultation 1, we use the SHAP value, denoted here by the
intensity_m0_shap variable. The value of 0.02864 assigned to the variable corresponds
to its contribution in consultation 1. Here, what is interesting is that the contribution
of the variable intensity_m0_shap is negative, and the model prediction is correct.

Similar behavior is observed in Figures 6.8 and 6.9. In both cases, the variable
intensity takes on the value 7 at consultation 1, generating a positive contribution to
the output. However, since the true output is 0, the direction of the contribution is
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Figure 6.6: (Color online). Histogram plot showing the distribution of patients over
the meta-features SHAP extracted from patients with intensity value 7 at the first
consultation.

(a) Explanation using first consultation only.

(b) Explanation using the first two consultations.

Figure 6.7: (Color online) SHAP force plots explaning the same instance (83). Figure
6.7a considering the first visit only, and Figure 6.7b considering the second consultation
plus the SHAP features extracted from the first consultation.

incorrect. At consultation 2, the correct output is predicted, and the SHAP variables
now contributes in the opposite (and correct) direction. Finally, unlike in consultation
1, in consultation 2, the models can predict the correct output.

Regarding RQ3, we can observe that when moving from consultation 1 to 2, we
transferred knowledge instead of carrying over raw information from previous consul-
tations. While 41 patients have the same intensity value at consultation 1, SHAP
computes 41 contributions of different magnitudes, including positive and negative val-
ues. The main benefit of using SHAP values as meta-features is that the computation
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(a) Explanation using first consultation only.

(b) Explanation using the first two consultations.

Figure 6.8: (Color online) SHAP force plots explaning the same instance (121). Figure
6.8a considering the first visit only, and Figure 6.8b considering the second consultation
plus the SHAP features extracted from the first consultation.

(a) Explanation using first consultation only.

(b) Explanation using the first two consultations.

Figure 6.9: (Color online) SHAP force plots explaning the same instance (133). Figure
6.9a considering the first visit only, and Figure 6.9b considering the second consultation
plus the SHAP features extracted from the first consultation.

of a variable’s contribution considers its value and its often complex relationship with
other variables.

6.5 Discussion

The aim of the present research was to investigate the use of models’ explanations acting
as a memory in longitudinal data. One of the more significant findings to emerge from
this study is that we show evidence suggesting explanatory factors from previous data
point time renders more critical information than the raw data itself.

The research has also shown that this enhanced data leads to an increase in
accuracy performance. The proposed approach, using the ED-Ensemble algorithm and
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up to five consultations, achieved an increase of 23.37% in AUC, from 0.766 to 0.945.
A similar trend is also observed in the XGBoost and Random Forests algorithms. As
we increase the number of consultations considered, our proposed approach increases
the AUC, with XGBoost improving 50% and Random Forest 62.98%.

Conversely, by simply accumulating raw data from all sequential consultations,
the performance in considering more data seems to deteriorate. Two factors might
contribute to this diminish in performance. First, each additional visit accounts for
more than 300 features. Also, considering more consultations, the number of instances
is reduced, doubly impacting the dimensional space size. Additionally, there are cor-
relations within consultations from the same subjects (inherent in longitudinal data).
These correlations become more strong as more information is granted. Traditional
machine learning approaches are usually not explicitly tailored for handling longitudi-
nal data, thus mitigating the accuracy performance. Lastly, in most scenarios, using
EXP-MF presented as statistically superior to accumulating consultations.

Finally, we presented a data-wise approach that enhances traditional machine
learning approaches in longitudinal data, even if such algorithms are not specifically
designed to handle this data organization.



Chapter 7

Conclusions and Future Work

This chapter presents the conclusions and further research for this thesis. It is or-
ganized as follows. Section 7.1 presents a review of our statement and contributions.
Section 7.2 discusses future works. Finally, Section 7.3 outlines the publications during
candidature.

7.1 Conclusions of this Thesis

This thesis aims to study an underexplored link between explanatory modeling and pre-
dictive modeling, leading to a novel ensemble learning approach. Recently, the emer-
gence of model-agnostic explanation methods, notably SHAP [Lundberg and Lee, 2017],
allowed obtaining the prediction explanation from models characterized as black-boxes.
Such models as XGBoost [Chen and Guestrin, 2016] and Random Forests [Breiman,
2001] ensembles, by their nature, are not explainable. We show a nearly unknown
relationship between explanation and prediction. The explanation of a model is more
correlated with the model output than the feature set. Also, explanations provide more
knowledge than the features information, as it sums up each feature’s contribution.

The ensemble is a technique that uses a combination of models to generate pre-
dictions, achieving better performance than any of the single classifiers of the ensemble
alone. Several factors are associated with the effectiveness of an ensemble: (a) rela-
tionship between accuracy and diversity of the base models [Kuncheva and Whitaker,
2003; Opitz, 1999] and (b) stability [Breiman, 1996] are two of them. Despite diversity
being recognized as an essential characteristic in constructing good ensembles, there is
no single, universally accepted measure for diversity.

Specifically, we are interested in the use of model explanations as a measure of
diversity. Our approach exploits two concepts. First, local models that compose the en-

104
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semble should be diverse in terms of their explanatory factors. Also, candidate models
should be arranged by seeking stability, i.e., models that perform similar predictions
should also be similar in terms of their explanatory factors.

We evaluate our ensemble learning approach to predict the evolution of pain relief
in patients with unknown chronic pain conditions. Despite the existence of several
guidelines and recommendations for its treatment, up to 40% of chronic pain patients
may remain symptomatic despite the best medical treatment. Precisely defining the
best therapy for a patient is still a challenge. The chronic pain dataset is well suited
for our purposes because it is characterized as multi-structure phenomena. Chronic
pain can originate from multiple factors, and as such, highly correlated data regions
and ground-truth output are expected.

In multiple phenomena problems, typically exists a particular set of “backbone
features” that, once set, causes the remainder of the features to decompose into different
subsets in the data space. The backbone structure suggests that the problem is defined
by multiple local structures. Often, these many-structure phenomena are modeled
using the simple all-in-one approach, which fits all the available factors (or features)
into a single sub-optimal model. Instead, by learning local models composed of different
feature sets, we can achieve feature decompositions that feature selection algorithms
can not. Further, our approach proved superior to BENCH [Pansombut et al., 2011],
significantly outperforming by 6.8%. BENCH is a well-known biclustering technique
that performs feature decomposition.

Our experiments demonstrate that our novel ED-Ensemble approach using XG-
Boost provides relative performance gain up to 9.86% when compared with the best
XGBoost local model and up to 20.37% compared to the XGBoost all-in-one approach.
When using the Random Forests learning algorithm, the performance is 4.17% higher
than the best local model and 15.03% higher than the all-in-one approach. Along with
the improved performance, the generated ensemble makes use of a significantly reduced
number of features. In particular, for the XGBoost learning algorithm and the VAS30
label, the generated ED-Ensembles uses as low as 15% of the features. This remarkably
reduced subset yields side benefits as improving the predictions’ explainability.

Interestingly, our ED-Ensemble approach shows a superior performance even
when base models are ensemble algorithms representing distinguished ensemble con-
struction approaches: bagging (Random Forest) and boosting (XGBoost). Although
the error reduction of both models may be given as similar in the literature, how this
objective is achieved is different. Bagging seeks to reduce the total error mainly by
reducing the variance while boosting seeks to reduce the error mainly by reducing the
bias.
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We also show an analysis of the error decomposition into bias and variance to
characterize the gain provided by the proposed ensemble. Our ensemble can reduce
the error by two competing strategies. Learning more complex relations by selecting
performant and diverse models, thus reducing the bias error. At the same time, using
smaller base models keeps the variance low. This strategy allowed a performance gain
to be achieved with either algorithms.

Further, motivated by the standard chronic pain treatment protocol that com-
prises many subsequent appointments, we extend our work to handle longitudinal data.
In general, tradicional machine learning approaches are not specifically tailored to
work with longitudinal data. Neglecting the assumption that these algorithms were
designed for cross-section data leads to the induction of models with poor accuracy
performance. We used the models’ explanations as meta-features acting as memory
from previous consultations. We follow the explanation-diversity feature selection pro-
cedure proposed which indicates a preference for choosing feature importances carried
over earlier consultations instead of the raw information. This method is a strong indi-
cation that feature importances contain more decisive information than features from
previous consultations. Our experiments consistently showed that the more consulta-
tions granted, the higher the performance achieved. Our approach EXP-MF with an
ED-Ensemble could achieve an AUC of 0.945 considering five consultations. A similar
uptrend in AUC was also observed for the Random Forests and XGBoost algorithms.

Finally, this thesis presents an approach to ensemble generation based on ex-
planations diversity, aimed at multi-structure phenomena modeling. By relating local
structures and model explanations, our ensemble learning approach achieved superior
performance to the well-established ensemble methods XGBoost and Random Forests.
Our novel ED-Ensemble approach presents as a superior alternative to the all-in-one

approach in multiple phenomena problems with cross-sectional and also longitudinal
data.

7.2 Future Work

• “Would the patient x have a decrease of blood pressure if he took the medication
m1?”. “What if he takes the medication m2?”. These types of questions are
often framed as counterfactual questions. Counterfactuals are specific missing
values cases in which the missing values cannot be observable. By relating local
structures and model explanations, we can generate many reduced models. Each
reduced model can generate a counterfactual, identifying minimal changes to
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alter its outcome. Instead of constructing a single counterfactual, we would like
to generate a set of minimal agreeing changes.

• When we analyze the feature impact, we estimate it through the average of
the impacts in the model. Nonetheless, there are features in which the impact
distribution is nearly symmetrical. This distribution produces an average close
to zero. Partitioning the feature to distinguish cases resulting in positive and
negative impacts could add more knowledge to the model explanatory factors.

• Cooperate to develop a Clinical Decision Support System (CDSSs) for chronic
pain evolution prediction from the findings in this work. Using the explanation-
based ensemble would bring two practical benefits: increased performance for
predicting the evolution of chronic pain and a reduced number of features. In
particular, the reduction of features would allow the creation of questionnaires
with fewer questions.

7.3 Publications During Candidature

We achieved some results and conclusions for this proposal. The following pub-
lications have explicitly indicated the authors’ contribution to this work.

Published

– Costa, A. B. D., Moreira, L., Andrade, D. C. D., Veloso, A., and Ziviani,
N. (2021). Predicting the Evolution of Pain Relief: Ensemble Learning
by Diversifying Model Explanations. ACM Transactions on Computing for

Healthcare, 2(4), 1-28.

Submitted (Under Review)

– Costa, A. B. D., Moreira, L., Andrade, D. C. D., Veloso, A., and Ziviani, N.
(2022). Predicting the Evolution of Pain Relief: Learning Treatment Effec-
tiveness Using Model-Explanations as Meta-Features. Artificial Intelligence

in Medicine.
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Appendix A

Running Time Computational Cost

In this appendix, we will discuss the runtime required to generate the proposed ED-
Ensemble. Although the time spent to generate the ensembles does not influence the
benefits already shown throughout the work, such as increase of the AUC, increase in
accuracy, and reduced feature set, it can be a critical factor in the feasibility of applying
the technique in miscellaneous use cases.

Nearly the entire runtime contribution originates from generating the model
space. Therefore, this will be our study case. Moreover, to provide a standard on
measured time, we will begin describing the hardware and software specifications on
which the experiments were performed.

This appendix is organized as follows. Section A.1 describes the hardware and
software specifications used throughout the work. In Section A.2, we show the time
spent to sample the model space under different parameter configurations.

A.1 Hardware and Software Specifications

The hardware specification is Intel(R) Core(TM) i5-10400 CPU @ 4.30GHz, 16GB
DDR4 26666 MT/s, and 256GB SSD. As the algorithms used did not make use of the
graphics card, we will omit the information.

Regarding the software specifications, we used the Ubuntu 20.04 LTS operating
system along with Python 3.8 installed through Anaconda1.

1
https://anaconda.org
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A.2 Sampling Model Space

As we increase the maximum number of features allowed, we can obtain improved
ensembles. Conversely, it is also expected to increase the computational cost. Since
interpretability is a crucial aspect of our work, we set the upper limit to 15 features.

We have shown that it is possible to use multiple configurations in sampling model
space throughout the work. It should be selected the learning algorithm (XGBoost
or Random Forests), the label (VAS30, VAS50, or GIC), and the maximum number
of features. Furthermore, there are two possible data sets; the entire dataset (631
instances) or the dataset with at least three visits for each patient (265 instances).

First, we will use the entire dataset. As the most costly scenario, it is a valid
representation of the worst case. We will use the upper limit of 15 features, the high-
est value used. Also, our experiments show that there is no significant difference in
running time spent for different labels. Hence we will select the VAS30 label in the ex-
periments. Finally, the only parameter that will be changed to show the computational
cost employed is the learning algorithm.

Table A.1 presents the running time (in minutes) when sampling the model space
with the entire dataset, XGBoost learning algorithm, VAS30 label, and setting the
maximum number of features at 15. As can be seen, the time taken to sample the
model space steadily rises as we increase the number of features. This trend is expected
as each additional feature necessarily implies an additional data dimension, requiring
more time into training. For the specific case where the number of variables is 1, the
small amount of 0.17 minutes occurs because only 500 models are sampled. Conversely,
for other quantities, 10 000 are sampled. When the maximum number of features is
set to 2, 6.5 minutes are needed to generate the model space. On the other hand, 15
features take 16.85 minutes, an increase of 259.23%.

Figure A.1 presents the line plot for better showing the relationship between the
number of features and the time spent. It is interesting to note that the time required
grows at an approximately constant rate.
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Table A.1: Running time spent to sample the model space using XGBoost learning
algorithm and VAS30 label. Each row contains data about the maximum number of
features, the total time spent to sample 10 000 models with this length, and the third
column is the average time per 1 000 models.

# of features Total time (in minutes) Avg. time per 1 000 samplings
(in minutes)

1 0.17 N/A
2 6.5 0.65
3 7.69 0.76
4 8.4 0.84
5 9.02 0.90
6 9.7 0.97
7 10.63 1.63
8 11.24 1.12
9 12.13 1.21
10 13.19 1.31
11 13.82 1.38
12 14.54 1.45
13 15.58 1.55
14 16.31 1.61
15 16.85 1.68

Total 165.79 N/A

Figure A.1: Line plot showing the correlation between the number of features and the
total time spent to sample the model space, using the learning algorithm XGBoost.
It can be easily seen that there is a positive and steady increase in the computational
cost as the number of features increase.
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Following, we perform similar experiments using the Random Forests learning
algorithm. Table A.2 shows that the computational cost when using the Random
Forests learning algorithm is lower than XGBoost.

Table A.2: Running time spent to sample the model space using Random Forests learn-
ing algorithm and VAS30 label. Each row contains information about the maximum
number of features, the total time spent to sample 10 000 models with this length, and
the third column is the average time per 1 000 models.

# of features Total time (in minutes) Avg. time per 1 000 samplings
(in minutes)

1 0.25 N/A
2 8.59 0.85
3 9.45 0.94
4 9.5 0.95
5 9.56 0.95
6 9.61 0.96
7 9.66 0.96
8 9.71 0.97
9 9.8 0.98
10 9.85 0.98
11 9.89 0.98
12 9.87 0.98
13 9.9 0.99
14 9.93 0.99
15 9.97 0.99

Total 135.55 N/A

Figure A.2 shows similar plot using Random Forests. As can be seen, the increase
in the computational cost also presents a steady growth. Nonetheless, we observe that
the growth is small yet constant. The relative increase from 8.59 minutes to 9.97
minutes represents an increase of 16.06%.
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Figure A.2: Line plot showing the correlation between the number of features and
the total time spent to sample the model space, using the learning algorithm Random
Forests. There is a positive and steady increase in the computational cost as the
number of features increases.

Finally, the total time to sample the entire model space was 165.79 minutes with
XGBoost and only 135.55 minutes with Random Forests. In order to sample the model
space with a 15 features limit, using the Random Forests learning algorithm is 20%
faster than using the XGBoost learning algorithm.



Appendix B

Extended Experiments Case Study
for labels VAS 50 and GIC

In this appendix we will perform, for VAS 50 and GIC labels, similar experiments
performed in Chapter 4.

Before turning to the ED-Ensemble approach, we calculated the pair-wise cor-
relation between GIC, VAS 30, and VAS 50. We observed that VAS 30 and VAS 50
are highly correlated, reaching a correlation value as high as 0.85. On the other hand,
GIC is not related to either VAS 30 or VAS 50, obtaining correlation values of 0.1 and
0.097, respectively. This difference means that ratings from patients and assessments
from clinicians may disagree. Further, when a patient achieves an overall reduction of
pain intensity by 30%, most of the time, it will also reach an overall reduction of 50%.

B.1 Baseline Models

As a baseline, we averaged AUC values by the all-in-one models and also carried out
Tree-based Pipeline Optimization Tool1 (TPOT). The first scenario represents the
standard approach. The second scenario employs a tool that optimizes the machine
learning pipeline using genetic programming. We set up the time limit for optimization
as 24 hours, once this is the approximate amount of time in our worst scenario case to
run our approach.

Table B.1 presents the average values of AUC obtained using the all-in-one ap-
proach with labels VAS 50 and GIC. It is worth mentioning the difficulty of predicting
the GIC label. TPOT is a machine learning pipeline optimization tool that automati-

1
http://epistasislab.github.io/tpot/
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cally selects the learning algorithm. The average AUC obtained using VAS 50 label was
0.598 by stacking up multiple estimators: Multinomial Naive Bayes, Gaussian Naive
Bayes, and k-Nearest Neighbors Classifier. Finally, using the GIC label resulted in an
average AUC of 0.568 through the stacking up of the following estimators: Stochastic
Gradient Descent (SGD) and XGBoost.

Table B.1: Baselines, sorted by label, with average AUC values obtained by the all-in-
one approach and TPOT to optimize the machine learning pipeline (time limit of 24
hours).

XGBoost Random Forests TPOT
Label AUC AUC Mean AUC
VAS 50 0.634 0.597 0.615 0.598
GIC 0.564 0.575 0.569 0.568

B.2 Predicting the Evolution of Pain Relief using
VAS50 and GIC labels

As the first step of our approach, we generate the model space H
0 by repeatedly sam-

pling random subsets of features followed by filtering out only those models that meet
the minimum performance criteria. The XGBoost VAS 50 model space comprises 1 408
models (0.94% of the models perform better than the all-in-one model), and 11 829

(7.89% of the models perform better than the all-in-one model) for Random Forests.
Regarding GIC, 18 575 models (12.38% of the models perform better than the all-in-
one models) are selected for XGBoost and 10 035 models for Random Forests (6.69%
of the models perform better than the all-in-one model).

Figure B.1 shows XGBoost and Random Forests model spaces for labels VAS 50
and GIC. Each point corresponds to a model, and the size of the point indicates the
variance of the validation error.

The next step is to perform clustering in the model space. The VAS 50 model
space is clustered using three different criteria: using the predictions performed by each
model, using the indexes of the features within each model, and using the explanatory
factors associated with each model. Specifically for VAS 50 in conjunction with the
XGBoost learning model, the silhouette score when clustering using feature criterion
is 0.017 for hierarchical clustering and -0.021 for DBScan. For the probability criterion
the values of 0.089 and -0.288 respectively are obtained with hierarchical clustering and
DBScan. Finally, considering the SHAP criterion, good silhouetted values of 0.8115
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Figure B.1: (Color online) T-SNE visualization [van der Maaten, 2009] of the sampled
model space H

0. Each point represents a model x0. Models are placed according to the
probabilities of significant pain relief assigned to patients. Models that assign similar
probabilities to the same patients are placed next to each other in the space. The color
indicates the average (cross-validation) AUC value, and smaller points indicate that
the corresponding model has a smaller variance.

and 0.95 are obtained, again showing the cohesion and separation obtained when we use
explanatory factors criterion. When using the Random Forests model, the silhouette
values follow the same pattern. For the features criterion, we get 0.0055 and -0.0076.
For the probability criterion 0.0377 and -0.3741, lastly the explanatory factor criterion
we get 0.7839 and 0.8895. Always the first value refers to the hierarchical clustering
algorithm and the second to the DBScan clustering algorithm.

For GIC with XGBoost model, the silhouette score when clustering with fea-
ture criterion is 0.0055 for hierarchical clustering and -0.0175 for DBScan. For the
probability criterion, the values of 0.2311 and -0.4190 respectively are obtained with
hierarchical clustering and DBScan. Finally, considering the SHAP criterion, silhouette
values of 0.3762 and 0.0064 are obtained. When we use the Random Forests model,
the silhouette values follow the same pattern. For the features criterion, we get 0.01779
and 0.-0041. For the probability criterion 0.1592 and 0.2454, lastly the explanatory
factor criterion we get 0.4027 and 0.2167.

Following, we inspected the prototype models within each cluster in the XGBoost
and Random Forests model spaces. In this case, the XGBoost prototypes comprise 91
features, of which 76 are unique. For Random Forests, the total number of features
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within the corresponding models is 155, from which 123 are unique and have occurred
in only one model. Again, this is a strong indication that each prototype representing a
cluster is diverse when grouped by explanatory factors, a critical strategy for building
effective ensembles models.

For the GIC label, the XGBoost prototypes comprise 13 features divided into
two prototypes only. Interestingly, for Random Forests, 19 prototypes were generated,
resulting in 203 features used, from which 143 were unique. Again, our ensemble
strategy shows to employ diverse information while building the final model.

Table B.2 shows AUC values under different ensemble configurations using VAS
50. When using the XGBoost learning algorithm, the explanations criterion yielded
a relative gain of 12.41% over the best local model and 21.45% over the all-in-one
approach. An identical gain for both clustering algorithms. Using the DBScan cluster-
ing algorithm in conjunction with the Random Forests learning algorithm, the gains
obtained were 11.26% over the best local model and 32.33% (the largest gain) over
the all-in-one approach. The explanations criterion alone yielded positive gains only,
regardless of the clustering and learning algorithm used. Further, it also led to the
largest gain with the combination of the DBScan clustering algorithm and Random
Forests learning algorithm.

Table B.2: Ensemble performance for different clustering criteria and clustering al-
gorithms using VAS 50 label. The baseline AUC value for the best local model for
XGBoost was 0.68 and for Random Forests 0.71. Baseline AUC values for the all-in-
one approach for XGBoost was 0.634 and for Random Forests 0.597.

XGBoost Random Forests
Criterion Clustering AUC Gain Gain AUC Gain Gain

Best all-in-one Best all-in-one

Predictions DBScan 0.69 0.73% 8.83% 0.66 -7.04% 10.55%
Predictions Hierarchical 0.79 15.33% 24.60% 0.72 1.41% 20.60%
Feature values DBScan 0.73 6.57% 15.14% 0.69 -2.82% 15.58%
Feature values Hierarchical 0.77 12.41% 21.45% 0.79 11.26% 32.33%

Explanations DBScan 0.77 12.41% 21.45% 0.79 11.26% 32.33%

Explanations Hierarchical 0.77 12.41% 21.45% 0.78 9.86% 30.65%

Table B.3 shows the AUC values when using GIC label. It seems clear the advan-
tage provided by our ensemble approach proposed. The explanations criterion led to
the biggest gain in whole configurations tested. Up to 5.97% over the best local model
when using XGBoost learning algorithm and 11.96% when using Random Forests learn-
ing algorithm. Following, 25.59% over the all-in-one approach when using XGBoost
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learning algorithm and 32.17% when using Random Forests learning algorithm. Fi-
nally, the proposed approach proved to the robust, once again was the only criterion
that led to only positive gains regardless of the clustering and learning algorithms.

Table B.3: Ensemble performance for different clustering criteria and clustering algo-
rithms using GIC label. The baseline AUC value for the best local model for XGBoost
was 0.67 and for Random Forests 0.68. Baseline AUC values for the all-in-one approach
for XGBoost was 0.564 and for Random Forests 0.575.

XGBoost Random Forests
Criterion Clustering AUC Gain Gain AUC Gain Gain

Best all-in-one Best all-in-one

Predictions DBScan 0.70 4.48% 24.11% 0.66 -2.97% 14.78%
Predictions Hierarchical 0.70 4.48% 24.11% 0.72 5.88% 25.22%
Feature values DBScan 0.65 -2.98% 15.24% 0.67 -1.47% 16.52%
Feature values Hierarchical 0.68 1.49% 20.57% 0.69 1.47% 20.00%
Explanations DBScan 0.68 1.49% 20.57% 0.76 11.76% 32.17%

Explanations Hierarchical 0.71 5.97% 25.89% 0.74 8.82% 28.70%

The experiments using VAS 50 and GIC labels showed that the ED-Ensemble
approach was consistently effective, with significant gains despite the learning algo-
rithm and clustering algorithm used. Finally, we conclude with the statement that our
proposal has proven robust with this new set of experiments.
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