Tese apresentada à Pró-Reitoria de Pós-Graduação e Pesquisa do Instituto Tecnológico de Aeronáutica, como parte dos requisitos para obtenção do título de Doutor em Ciências no Programa de Pós-Graduação em Engenharia Aeronáutica e Mecânica, Área Aerodinâmica, Propulsão e Energia.

Ramón Eduardo Pereira Silva

PROJETO, CONSTRUÇÃO E ENSAIO DE UMA CÂMARA DE COMBUSTÃO DE MICROTURBINA OPERANDO COM ETANOL

Tese aprovada em sua versão final pelos abaixo assinados:

Prof. Dr. Pedro Teixeira Lacava Orientador

Prof. Dr. Luiz Carlos Sandoval Góes Pró-Reitor de Pós-Graduação e Pesquisa

Campo Montenegro São José dos Campos, SP – Brasil 2015

 Dados Internacionais de Catalogação-na-Publicação (CIP)

 Divisão de Informação e Documentação

 Silva, Ramón Eduardo Pereira

 Projeto, construção e ensaio de uma câmara de combustão de microturbina operando com

 etanol/Ramón Eduardo Pereira Silva.

 São José dos Campos, 2015.

 180f.

 Tese de doutorado – Curso de Engenharia Aeronáutica e Mecânica, Área de Aerodinâmica Propulsão e Energia – Instituto Tecnológico de Aeronáutica, 2015. Orientador: Prof. Dr. Pedro Teixeira Lacava

 1
 Combustão de etanol 2 Microturbinas a gás 3 Emissões de poluentes. L Instituto Tecnológico de

1. Combustão de etanol. 2. Microturbinas a gás. 3. Emissões de poluentes. I. Instituto Tecnológico de Aeronáutica. II. Título

REFERÊNCIA BIBLIOGRÁFICA

SILVA, Ramón Eduardo Pereira. **Projeto, construção e ensaio de uma câmara de combustão de microturbina operando com etanol**. 2015. 180f. Tese de doutorado em Aerodinâmica, Propulsão e Energia) – Instituto Tecnológico de Aeronáutica, São José dos Campos.

CESSÃO DE DIREITOS

NOME DO AUTOR: Ramón Eduardo Pereira Silva TÍTULO DO TRABALHO: Projeto, construção e ensaio de uma câmara de combustão de microturbina operando com etanol: Tese / 2015

É concedida ao Instituto Tecnológico de Aeronáutica permissão para reproduzir cópias desta tese e para emprestar ou vender cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta dissertação ou tese pode ser reproduzida sem a sua autorização (do autor).

Ramón Eduardo Pereira Silva Praça Marechal Eduardo Gomes, 50 – Vila das Acácias CEP: 12228-900/São José dos Campos - SP

PROJETO, CONSTRUÇÃO E ENSAIO DE UMA CÂMARA DE COMBUSTÃO DE MICROTURBINA OPERANDO COM ETANOL

Ramón Eduardo Pereira Silva

Composição da Banca Examinadora:

Prof. Dr.	Cristiane Aparecida Martins	Presidente	-	ITA
Prof. Dr.	Pedro Teixeira Lacava	Orientador	-	ITA
Prof. Dr.	Amílcar Porto Pimenta		-	ITA
Prof. Dr.	Marco Antônio Rosa do Nascimento		-	UNIFEI
Prof. Dr.	Waldir Bizzo		-	UNICAMP

iii

Dedico ao meu Avô Joaquim Pereira, que sem saber, me ensinou a Lei de Stevin em um canteiro de obras e mostrou que sempre há acerto para os quadros tortos das minhas paredes. À Izabel e ao Donizett que a partir dos alicerces fortes do Seu Joaquim e com o prumo e esquadro corretos levantaram as paredes para que pudesse pendurar meus quadros. Às mulheres da minha vida: Maria, Inês, Laura e Beatriz. Às minhas irmãs Fabiana e Déborah. À Lara pelos "por quês?" incessantes.

Agradecimentos

"Se vi mais longe, foi porque estive de pé sobre ombros de gigantes". Não poderia iniciar os agradecimentos sem citar a celebre frase de Isaac Newton.

Gigante foi meu orientador Prof. Dr. Pedro Teixeira Lacava que me encaminhou nessa jornada mostrando os rumos certos mesmo quando as coisas pareciam estar erradas.

Gigante foi a Laura, meu Amor, que me suportou e apoiou nessa empreitada, perdendo momentos de companheirismo com o carinho e com a compreensão que só quem ama pode ter.

Gigante foi a pequena Beatriz, que veio nos alegrar quando este projeto estava na metade do caminho. Que ao me ver escrevendo, curiosa, queria saber se o papai estava fazendo "atividade" da escolinha. E que tantas vezes rabiscou minhas anotações no quadro branco.

Gigante foi a Profa. Dra. Leila Ribeiro dos Santos, que garantiu o desenvolvimento e entre muitas conversas garantiu a qualidade dos experimentos.

Gigante mais uma vez foi o Eng. Carlos Guedes Neto em garantir apoio de laboratório.

Gigante foi o Eng. Sílvio Hayato Furukawa, amigo desde os primeiros limites do Cálculo I, que me recebeu em São José dos Campos outra vez, garantindo um término mais tranquilo desse projeto.

Aos grandes Engenheiros Claudio Luiz Castro Silva, Eric Cigagna e Jorge Aires que me apresentaram o magistério superior, meus primeiros cobaias. Aos Engenheiros Ricardo Mariotti Flora e Raphael Feres pelas longas conversas e pela força.

Aos grandes amigos do Laboratório de Combustão, Propulsão e Energia: Dr. Rogério Corá, Dr. Dener Almeida e futuros Doutores Loreto Pizzuti e Roberto Varella. Pelas angústias e pelas risadas.

Aos amigos Dr. Wagner Brasil, Dra Rosiane Lima, Dr Marcelo Assato, Dr Alexandre Alves e Dra Luciana Oliveira Melo pelas longas conversas e pelas conversas importantíssimas durante o tempo em que convivemos.

Aos Professores do curso de Engenharia de Energia da Universidade Federal da Grande Dourados. Especialmente ao Prof. Dr. Omar Seye e ao Prof. Dr. Clivaldo Oliveira, pela amizade e pelo empenho para que eu pudesse terminar essa tese. Aos Professores Antônio Carlos Caetano de Souza, Fernando Augusto Alves Mendes e Eduardo Mirko Valenzuela Turdera pela amizade e por terem assumido minhas disciplinas nessa reta final.

Enfim ao Gigante Ramón Silva, meu pai, por ter me carregado nos ombros de um sonhador.

"Quando uma criatura humana desperta para um grande sonho e sobre ele lança toda a força de sua alma, todo o universo conspira a seu favor."

(Johann Wolfgang von Goethe)

"A alegria não chega apenas no encontro do achado, mas faz parte do processo da busca. E ensinar e aprender não pode dar-se fora da procura, fora da boniteza e da alegria." (Paulo Freire)

Resumo

Neste trabalho foram desenvolvidos os projetos de uma câmara de combustão e de um atomizador do tipo *pressure-swirl* que permitiram a operação de uma microturbina a gás, utilizando etanol como combustível. O combustor e o injetor foram projetados para as características físico-químicas do etanol anidro. A influência da presença de água no combustível foi ser analisada nos ensaios. Foram realizados ensaios de desempenho e emissões de gases na microturbina. A determinação do Diâmetro Médio de Sauter (SMD) e do ângulo de abertura do do spray também foi realizada. Na análise dos resultados investigouse o comportamento das relações ar/combustível, a emissão de poluentes e sua correlação com atomização do combustível e com a eficiência de combustão. A operação da microturbina ocorreu de maneira estável, validando tanto o projeto do combustor quanto o do atomizador. A razão de equivalência aumentou com o aumento da rotação do SMD. Fato esse que promoveu decréscimo nas emissões de monóxido de carbono (CO) e óxidos de nitrogênio (NO_x) demonstrando melhoria na eficiência de combustão.

Abstract

The design of a combustion chamber and a pressure-swirl atomizer for ethanol operation on a micro gas turbine were carried out at this work. Both the combustor and the injector were designed regarding the physical-chemical characteristics of anhydrous ethanol. However the influence of water in the fuel was analyzed in tests. Performance and exhaust emissions were performed. Also the Sauter Mean Diameter (SMD) and spray cone angle were defined. The investigation of the ar/fuel relationship, the pollutant emissions and their correlation with the fuel atomization and combustion efficiency was also executed. The run of the microturbine occurred in a deep-steady way, fact which validates both the combustor and the atomizer design. Equivalence ratio increased with the shaft angular velocity. Injection pressure increased with the fuel mass flow inducing a decrease in SMD. This event provoked a reduction on carbon monoxide (CO) and nitrous oxides (NO_x) emissions evidencing the improvement on combustion efficiency.

Lista de Figuras

FIGURA 1.1– Motor LM6000 (GEAVIATION, 2015)
FIGURA 1.2– UTE-JF (GENERAL ELECTRIC, 2011)25
FIGURA 2.1- Evolução da razão de compressão por ano de certificação (adaptado de
JACKSON et al., 1998)
FIGURA 2.2- Procedimento típico de turbina a gás (adaptado de SARAVANAMUTTOO et
<i>al.</i> , 2009)
FIGURA 2.3 - Configuração básica de uma câmara de combustão (adaptado de LEFEBVRE e
BALLAL, 2010)
FIGURA 2.4 – Desenvolvimento da atomização (adaptado de MALY, 2014)45
FIGURA 2.5 – Injetor tipo pressure-swirl (adaptado de LEFEBVRE, 1989)45
FIGURA 2.6 – Desenvolvimento do spray em um injetor tipo pressure swirl (adaptado de
LEFEBVRE, 1989)
FIGURA 2.7 – Emissão de NO em relação à razão de equivalência por SMD (adaptado de
LEFEBVRE, 1989)
FIGURA 3.1 – Fluxograma de projeto de uma câmara de combustão52
FIGURA 3.2 – Montagem da microturbina
FIGURA 3.3 – Mapa de desempenho do compressor
FIGURA 3.4 -Validação da rotina de cálculo57
FIGURA 3.5 – Temperatura de chama adiabática do etanol para as condições de projeto57
FIGURA 3.6 - Limites teóricos de razão de equivalência na região pobre
FIGURA 3.7 – Diâmetro de referência60
FIGURA 3.8 - Eficiência de combustão (BALLAL e LEFEBRE, 2010)64
FIGURA 3.9 – Diâmetro do tubo de chama

FIGURA 3.10 - Relação entre o comprimento do tubo de chama e a zona de diluição em
função do fator de perda de pressão e do fator de temperatura (LEFEBVRE e BALLAL,
2010)
FIGURA 3.11 – Esquemático do swirler projetado77
FIGURA 3.12 - Cúpula e zona de recirculação78
FIGURA 3.13 – Perfil de temperatura típico (adaptado de MELCONIAN e MODAK, 1985)
FIGURA 3.14 – Perfil de temperatura dos gases para as condições de operação
FIGURA 3.15- Fenda de resfriamengto na parede do tubo de chama (adaptado de:
LEFEBVRE e BALLAL, 2010)
FIGURA 3.16- Transferência de calor na parede do tubo de chama (adaptado de:
LEFEBVRE e BALLAL, 2010)
FIGURA 3.17 – Temperatura na parede do tubo de chama para a condição mais crítica94
FIGURA 3.18 – Dimensões do tubo de chama
FIGURA 3.19 – Tubo de chama projetado99
FIGURA 3.20 – Tubo de chama
FIGURA 3.21 – Principais dimensões do injetor pressure-swirl (ALVES e LACAVA, 2009)
FIGURA 3.22 – Fluxograma do projeto do injetor pressure-swirl (ALVES e LACAVA, 2009)
FIGURA 3.23– coeficiente de perda ε_c em função da geometria de entrada arredondada.
(ALVES e LACAVA, 2009)
FIGURA 3.24– coeficiente de perda ε_c em função da geometria de entrada cônica. (ALVES e
LACAVA, 2009)

FIGURA 3.25– coeficiente de perda ε_c em função da geometria de entrada em canto vivo.
(ALVES e LACAVA, 2009)
FIGURA 3.26 – Dimensões do injetor de etanol108
FIGURA 3.27– Montagem dos injetores110
FIGURA 3.28– Lanças dos injetores de gás e etanol110
FIGURA 3.29 – Injetor híbrido montado111
FIGURA 3.30 – Montagem do injetor híbrido de GN e EHC111
FIGURA 4.1 – Câmara de combustão113
FIGURA 4.2 – Esquemático da bancada e a bancada montada114
FIGURA 4.3 – Rack com os módulos115
FIGURA 4.4 – Sistema Malvern Spraytec (VASQUEZ et. Al.,2011)
FIGURA 4.5 – Bancada de ensaio de ângulo de spray117
FIGURA 4.6 – Montagem do experimento118
FIGURA 4.7 – ângulo de <i>spray</i> 119
FIGURA 5.1 – Fração molar de oxigênio nos gases de escape124
FIGURA 5.2 – Fração molar de dióxido de carbono nos gases de escape125
FIGURA 5.3 – Fração molar padronizada de dióxido de carbono nos gases de escape 125
FIGURA 5.4 – Fração molar padronizada de monóxido de carbono nos gases de escape 126
FIGURA 5.5 – Fração molar de metano nos gases de escape126
FIGURA 5.6 – Ganho de temperatura, temperatura calculada na zona de recirculação e
emissões de NO _x
FIGURA 5.7 – Vazão real pela vazão indicada no rotâmetro128
FIGURA 5.8 – Rotação x vazão real de combustível129
FIGURA 5.9 – Razão entre pressões estáticas na saída e na entrada do compressor130
FIGURA 5.10 – Posição das medidas no mapa de desempenho do compressor

FIGURA 5.11 – Vazão mássica de ar x rotação132
FIGURA 5.12 – Razão de equivalência x rotação132
FIGURA 5.13 – Comparativo entre emissões de oxigênio133
FIGURA 5.14– SMD x diferencial de pressão136
FIGURA 5.15 – Pressão de injeção e pressão na câmara de combustão136
FIGURA 5.16 – Temperatura na saída do compressor137
FIGURA 5.17 – SMD nas condições de ensaio137
FIGURA 5.18- Porcentagem volumétrica de gotas em função da pressão de injeção para
cinco faixas de diâmetro a 30 mm do orifício de saída do injetor139
FIGURA 5.19 – Porcentagem volumétrica de gotas em função da pressão de injeção para
cinco faixas de diâmetro a 40 mm do orifício de saída do injetor139
FIGURA 5.20 – Porcentagem volumétrica de gotas em função da pressão de injeção para
cinco faixas de diâmetro a 50 mm do orifício de saída do injetor140
FIGURA 5.21 – Porcentagem volumétrica de gotas em função da pressão de injeção para
cinco faixas de diâmetro a 60 mm do orifício de saída do injetor140
FIGURA 5.22 – Eficiência de combustão relacionada ao SMD e às emissões de CO e UHC
FIGURA 5.23 – Eficiência de combustão relacionada às emissões de CO e UHC e admitida
na saída da zona de diluição
FIGURA 5.24 – Ângulo de abertura do spray145
FIGURA 5.25 – Concentração de NO _x corrigido a 15% de O ₂ 148
FIGURA 5.26 – Concentração de CO corrigido a 15% de O ₂ 148

Lista de Tabelas

TABELA 2.1 – Aplicações de microturbinas (adaptado de GIAMPAOLO. 2006).	31
TABELA 2.2 - Potência e razão de compressão de algumas microturbinas (adaptado	o de
NASCIMENTO et al., 2015).	31
TABELA 2.3- Pressão de injeção e diferencial de pressão (adaptado de EPA, 2000; E	EPA,
2003; NASCIMENTO et al., 2015)	32
TABELA 2.4 – Especificações principais do EAC e do EHC (ANP 7:2011)	36
TABELA 3.1 – Parâmetros do compressor para a análise de desempenho	55
TABELA 3.2- Limites teóricos de razão de equivalência	58
TABELA 3.3- Razão ar/combustível e quantidade de ar	59
TABELA 3.4- Parâmetros adimensionais de perda de pressão na câmara de combu	ıstão
tubular	61
TABELA 3.5- Áreas de referência do ponto de vista aerodinâmico	62
TABELA 3.6– Fator de correção de temperatura	64
TABELA 3.7- Áreas de referência pelo método de velocidade de queima	65
TABELA 3.8 – Comparativo entre os diâmetros de referência	66
TABELA 3.9– Área e diâmetro do tubo de chama	66
TABELA 3.10– Perda de carga total $\Delta P_{2-3}/P_2$ calculado para $D_{ref} = 0,13$ m	67
TABELA 3.11 – Carga aerodinâmica calculada para $D_{ref} = 0,13$ m	67
TABELA 3.12– Distribuição de ar e razão de equivalência na câmara de combustão	68
TABELA 3.13- Parâmetros adimensionais de perda de pressão na câmara de combu	istão
tubular e qualidade transversal calculada	70
TABELA 3.14 – Comprimentos das zonas no tubo de chama	71
TABELA 3.15 – Parâmetros de projeto do swirler	75
TABELA 3.16– Projeto do swirler	76

TABELA 3.17 – Projeto da zona de recirculação e da cúpula	78
TABELA 3.18 – Temperatura dos gases e eficiência de combustão	82
TABELA 3.19 – Temperatura na parede do tubo de chama	94
TABELA 3.20 – Área, quantidade e diâmetro calculados.	97
TABELA 3.21 – Quantidade, diâmetro e posição das colunas.	97
TABELA 3.22 – Quantidade, diâmetro e posição das colunas.	98
TABELA 3.23 – Ângulo de penetração do jato	98
TABELA 3.24 – Propriedades do EAC	100
TABELA 3.25 – Condições de injeção na câmara	101
TABELA 3.26 – Parâmetros dimensionais para o projeto preliminar do atomizador	108
TABELA 3.27 – Características do spray	109
TABELA 4.1 – Pontos de aquisição de pressão	113
TABELA 4.2 – Pontos de aquisição de temperatura	113
TABELA 4.3– Módulos de aquisição e análise dos gases de combustão	115
TABELA 5.1– Propriedades físico-químicas do EHC utilizado.	122
TABELA 5.2- Limites de emissões de poluentes para turbinas a gás (Adaptad	a de
CONAMA, 2006).	146

Lista de Abreviaturas e Siglas

ANP Agência Nacional do Petróleo, Gás Natural e Biocombustíveis

- API American Petroleum Institute
- APU Auxiliary Power Unit
- EAC Etanol anidro combustível
- EHC Etanol hidratado combustível
- ISO International Standardzation Organization
- SMD Diâmetro Médio de Sauter (Sauter Mean Diameter)
- PCI Poder calorífico inferior
- PCS Poder calorífico superior
- TG Turbina a gás
- TIT Temperatura de entrada na turbina
- TQ Qualidade transversal
- ÚNICA União da Indústria de Cana de Açucar

Lista de Símbolos

Letras Latinas

- A Área
- C Fluxo de calor por convecção
- C_d Coeficiente de descarga
- d Diâmetro
- FN Número de fluxo

- $f_{ac} \qquad \mbox{razão ar/combustível} \label{eq:fac}$
- GN Gás natural
- i Espécie
- K Fluxo de calor por condução
- k Fator de perda de pressão
- km Relação entre parâmetro geométrico equivalente e real
- kW Quilowatt
- kw Condutividade térmica
- L_u Fator de luminosidade
- l_b Comprimento característico do gás
- *m* Vazão mássica
- MW Massa molar
- N Número de moles
- *N* Vazão molar
- P Pressão total
- p Pressão estática
- PR Razão de compressão
- q Pressão dinâmica
- R Fluxo de calor por radiação
- R Constante universal dos gases
- Re Número de Reynolds
- rpm rotação
- T Temperatura
- TG Turbina a gás
- t Espessura

V Volume

Letras Gregas

α	Ângulo das pás do swirler
β	Ângulo do fluxo de ar no swirler
Δ	Variação
3	Emissividade térmica
ε _c	Coeficiente de perda de carga
λ	Coeficiente de perda de pressão no difusor
λ_1	Comprimento de onda do laser
μ	Viscosidade dinâmica (kg/m.s)
υ	Viscosidade cinemática (m²/s)
η	Eficiência (%)
ф	Razão de equivalência
ρ	Massa específica
σ	Tensão superficial (kg/s ²)
σ_{SB}	Constante de Stefan-Boltzmann
ζ	Coeficiente de área livre
θη	Carga aerodinâmica
θ	Ângulo

Subscritos

- 1 Entrada do compressor
- 2 Saída do compressor
- 3 Entrada da câmara de combustão

4	Saída da turbina
amb	Ambiente
aer	Aerodinâmico
an	Anular
ar	Ar
bac	Bocal de admissão da câmara
ca	Chama adiabática
car	Carcaça
сс	Câmara de combustão
comp	Compressor
comb	Combustível
combu	stão Combustão
cup	Cúpula
ct	canal tangencial
cv	câmara de vórtice
dif	difusor
est	Estequiométrico
eq	Equivalente
fin	Final
fenda	Fenda
g	Gases
gl	Global
i	Espécie
id	Ideal
in	Inicial

int	Interno
méd	Média
op	Operação
real	Real
ref	Referência
refr	Refrigeração
si	Saída do injetor
SW	Swirler
tc	Tubo de chama
v_q	Velocidade de queima
W	Parede
W_1	Parede interna
W2	Parede externa
zd	Zona de diluição
zp	Zona primária
zr	Zona de recirculação

zs Zona secundária

Sumário

1	INT	RODUÇÃO	23
1.1		Motivação	23
1.2		Objetivo	26
1.3		Delineamento do Trabalho	27
2	REV	/ISÃO BIBLIOGRÁFICA	29
2.1		Introdução	29
2.2		Uso de Biocombustíveis em Turbinas a Gás	33
2.3		Projeto de Turbinas a Gás	40
2.4		Câmara de Combustão de Turbinas a Gás	42
2.5		Injeção do Etanol	44
3	PRC	DJETO DA BANCADA	51
3.1		Introdução	51
3.2		Definição dos parâmetros iniciais de projeto	53
3.3		Dimensionamento da câmara de combustão	55
3.3	3.1	Limites Teóricos da Razão de Equivalência	56
3.3	3.2	Razão de Equivalência e Razão Ar/Combustível na Zona Primária	57
3.3	3.3	Área de Referência da Câmara pelo Ponto de vista Aerodinâmico	60
3.3	3.4	Área de Referência da Câmara pelo Ponto de Vista da Velocidade de Queima	62
3.3	3.5	Escolha da Área e do Diâmetro de Referência da Câmara de Combustão	65
3.3	3.6	Determinação da Área e do Diâmetro do Tubo de Chama	66
3.3	3.7	Verificação da Perda de Pressão Global e Eficiência de Combustão	67
3.3	3.8	Estimativa da Distribuição de Ar e do Filme de Resfriamento	68
3.3	3.9	Comprimentos das Zonas da Câmara de Combustão	69
3.3	3.10	Difusor	71
3.3	3.11	Dimensionamento do Swirler	72
3.3	3.12	Cúpula e Zona de Recirculação	77
3.3	3.13	Determinação das Temperaturas nas Zonas de Combustão	79
3.3	3.14	Transferência de Calor para as Paredes	83
3.3	3.15	Dimensionamento dos Orifícios de Admissão	95
3.3	3.16	Projeto Final do Tubo de Chama	98
3.4		Projeto do injetor para o etanol	.100

3.4.1	Montagem do Injetor	110
4 BA	NCADAS E ENSAIOS	112
4.1	Bancadas	112
4.1.1	Bancada para Ensaio da Câmara de Combustão operando com Etanol	112
4.1.2	Concentração dos Produtos de Combustão	115
4.1.3	Diâmetro Médio de Sauter e distribuição das gotas	116
4.1.4	Ângulo do Spray	116
4.2	Procedimentos de Ensaio	117
4.2.1	Determinação do Tamanho e Distribuição de Gotas do Spray de Etanol	117
4.2.2	Determinação do Ângulo de Spray do Etanol	118
4.2.3	Determinação dos Parâmetros Termodinâmicos	119
5 RE	SULTADOS E DISCUSSÕES	
5.1	Caracterização físico-química do EHC	
5.2	Incertezas	123
5.3	Frações molares dos gases de combustão	
5.4	Análise das vazões mássicas de combustível e de ar	127
5.5	Características do spray	133
5.5.1	SMD e Eficiência de Combustão	134
5.5.2	Ângulo de <i>Spray</i>	144
5.6	CONAMA 382/2006	145
6 CO	NCLUSÕES	149
6.1	Sugestões para Trabalhos Futuros	151
REFER	ÊNCIAS BIBLIOGRÁFICAS	152
APÊND	ICE A – ANÁLISE GASTURB	160
APÊND	ICE B – DADOS AQUISITADOS	162
APÊND	ICE C – DISTIBUIÇÃO DO TAMANHO DE GOTAS	
APÊND	ICE D – ÂNGULOS DE ABERTURA MEDIDOS	177
ANEXO	A – MAPA DE DESEMPENHO DO COMPRESSOR	

1 Introdução

Este trabalho avalia experimentalmente a combustão de etanol hidratado combustível (EHC) em uma microturbina a gás.

Para que o estudo fosse realizado, desenvolveu-se uma bancada experimental a partir de uma microturbina projetada originalmente para operações com gás natural.

Para a operação com etanol projetou-se uma câmara de combustão, tubular e de escoamento reverso, a partir dos métodos sugeridos por MELCONIAN e MODAK (1985) e LEFEBVRE e BALLAL (2010). Para a operação com combustível líquido foi projetado um atomizador do tipo *pressure-swil simplex* pelo método apresentado por ALVES e LACAVA (2009) embasado em KESSAEV (2006) e BAZAROV (2004).

Por motivo de segurança, uma chama piloto de gás natural veicular (GNV) foi utilizada na partida e no desligamento do sistema.

O estudo foi desenvolvido com a análise dos parâmetros de combustão do EHC na bancada.

O projeto tem seu início com o estudo do ciclo termodinâmico da microturbina, partindo-se do mapa de desempenho do compressor.

Uma vez determinado o ciclo termodinâmico, as condições iniciais do projeto da câmara de combustão foram definidas e o projeto de câmara para cada condição proposta para o trabalho foi desenvolvido.

Também, assim que foram definidas as condições inicias de operação, deu-se início, paralelamente, ao projeto do atomizador de combustível.

Finalizado o projeto, a câmara e o atomizador foram confeccionados e os ensaios foram realizados.

1.1 Motivação

A primeira experiência em escala real de utilização de termelétrica operando com etanol ocorreu no Brasil em Janeiro de 2010 (GENERAL ELECTRIC, 2011). Na cidade de Juiz de Fora, MG, foi instalada a Usina Termelétrica UTE-JF. Resultado de uma cooperação entre a General Electric e a Petrobras, converteu-se uma turbina aeroderivativa LM6000 originalmente projetada para utilizar gás natural para operar com EHC.

A turbina LM6000 da General Electric é capaz de entregar 42,43 MW na versão PC e 52,40 MW na versão PG. Possui dois eixos concêntricos e ciclo simples (GEAVIATION,2015). A Figura 1.1 mostra o motor LM6000.

FIGURA 1.1- Motor LM6000 (GEAVIATION, 2015)

Conforme citado em OLIVEIRA (2013), foram programadas mais de 1000 h de ensaios com variação de carga, injeção de água, transferência de operação de gás natural para etanol e partida com o combustível líquido.

Os resultados mostraram que houve equivalência de desempenho, emissões e desgaste do equipamento na operação com os dois combustíveis. Uma marca relevante foi a redução nas emissões de NO_x da ordem de 46,7%. As emissões de CO ficaram na casa dos 10 ppm na operação com os dois combustíveis. Porém não foram encontradas emissões de SO_x quando se operou com etanol, sendo que nessas condições as emissões de UHCs ficaram na casa dos 2 ppm.

Ainda segundo OLIVEIRA (2013) não foram necessárias grandes adaptações na conversão da turbina para operação com etanol, sendo que a GE optou por utilizar uma câmara de combustão mais reforçada, ou seja com uma espessura superior à original. Essa alteração foi feita para que pudesse resistir ao contato de gotas de etanol que poderiam causar explosões de vaporização em sua superfície, devido à maior volatilidade do etanol.

A mudança não acarretou qualquer desvio de desempenho em relação à operação com gás natural. A Figura 1.2 mostra a Usina Termelétrica de Juiz de Fora.

FIGURA 1.2– UTE-JF (GENERAL ELECTRIC, 2011)

Microturbinas são pequenas turbinas que operam com combustíveis líquidos e gasosos em alta rotação acoplados a um gerador elétrico para geração de potência.

As microturbinas atuais são resultantes do desenvolvimento de pequenas turbinas a gás estacionárias e automotivas, APUs (Auxiliary Power Unit) e turbocompressores, muito do que foi pesquisado pela indústria automotiva da década de 50.

São consideradas microturbinas, aquelas que operam entre 30 e 350 kW e são projetadas para operar com uma grande variedade de combustíveis, incluindo gás natural, gases ácidos (com grande quantidade de enxofre e baixo poder calorífico), gasolina, querosene e diesel. As microturbinas podem ainda operar com gases residuais que seriam incinerados ou lançados diretamente para a atmosfera. São ideais para aplicações em geração distribuída em razão da sua flexibilidade e habilidade de trabalhar em paralelo com a rede comercial para suprir cargas maiores de maneira estável e confiável e com baixos índices de emissões (EPA, 2008).

Durante as últimas décadas o desenvolvimento de microturbinas com níveis de eficiência próximos aos de grande turbinas a gás foi investigado (VISSER *et al.*,2011). Ainda de acordo com VISSER a utilização de turbocompressores automotivos como base para a montagem de microturbinas mostra-se uma oportunidade interessante, pois o projeto de uma câmara de combustão acoplada a um turbocompressor "de prateleira" evita o desenvolvimento de toda a turbomaquinaria, que já foi desenvolvida por um fornecedor. Podem ser montados

conjuntos com compressores e turbinas de modelos diferentes de maneira que o projeto atinja sua melhor eficiência.

A maior parte da energia elétrica do país provém de geração hidrelétrica o que torna o país refém de condições climáticas ano a ano. A geração por usinas termelétricas e principalmente por geração distribuída tem se tornado interessante.

Nesse contexto a utilização de microturbinas em geração distribuída pode se mostrar uma alternativa viável devido a sua capacidade de operar com vários combustíveis e sua baixa emissão de poluentes.

Há hoje no país algumas pesquisas como as desenvolvidas por SILVA *et al.* (2010) e NASCIMENTO *et al.*(2008) ja demostraram a viabilidade técnica da utilização de esteres etílicos como combustíveis alternativos líquidos. Esses estudos analisam a operação de microturbinas de mercado (Rover 1/S60 e Capstone C30), não levando em conta o projeto do equipamento.

As metodologias publicadas por MELCONIAN e MODAK (1985) e LEFEBVRE e BALLAL (2010) foram desenvolvidas para o projeto de grandes turbinas operando com hidrocarbonetos e NAVIA (2010) sugere que possam ser utilizados para operação com etanol, desde que se verifique os limites de flamabilidade na zona primária de combustão.

A contribuição desse trabalho está no desenvolvimento de uma bancada, validando a utilização desses métodos para projeto de combustores e atomizadores para microturbinas e realizar a análise experimental da combustão do etanol nesse tipo de máquina térmica.

1.2 Objetivo

Na literatura encontram-se alguns trabalhos sobre o uso de etanol em turbinas a gás. Contudo sempre são resultados sobre asimples troca do combustível para o qual o equipamento foi projetado. No entanto, não são comuns, trabalhos na literatura aberta sobre metodologia de projeto e ensaios em câmaras de geradores de gases específical para o etanol.

Dada a condição particular do Brasil em produzir etanol de forma profícua e em grau de escala, além da possibilidade de geração de energia distribuída usando microturbinas a gás; é interessante que o desenvolvimento de metodologias de projeto de câmara para etanol sejam feitos e sua verificação experimental seja executada.

Dentro deste contexto, o objetivo geral desse trabalho é estudar experimentalmente a combustão do etanol em uma câmara de combustão de microturbina a gás com metodologia de projeto adapatada para o uso deste combustível.

Como objetivos específicos são descritos:

- 1. Verificar se uma metodologia que inicialmente foi desenvolvida para combustão de turbinas a gás aeronáuticas usando querosene é adequada para o projeto de um combustor de microturbina que seja capaz de operar com etanol.
- 2. Desenvolover um injetor de combustível do tipo *pressure-swirl* para atomizar o etanol adequadamente na câmara de combustão.
- Prover uma bancada de teste, um gerador de gás coma características de uma microturbina, que permita a realização do estudo.
- 4. Realizar ensaios de forma a analisar os parâmetros de desempenho, emissões e eficiência de combustão da microturbina operando com etanol.

1.3 Delineamento do Trabalho

Este trabalho foi dividido em 6 capítulos da seguinte forma:

- 1. Introdução
- 2. Revisão bibliográfica
- 3. Projeto da bancada
- 4. Materiais e métodos
- 5. Análise dos resultados
- 6. Conclusões

O primeiro capítulo faz uma introdução ao tema, mostrando os objetivos do trabalho e o delineamento da tese.

No capítulo 2 é realizada a revisão bibliográfica sobre turbinas a gás e microturbinas, combustão de líquidos e mecanismos de geração de poluentes.

No capítulo 3 são definidos os requisitos de projeto pela análise termodinâmica da turbina a partir do mapa de desempenho do compressor. Também são desenvolvidos os projetos da câmara de combustão e do atomizador.

No capítulo 4 são definidas as bancadas para diagnósticos das características de spray do combustível líquido, parâmetros termodinâmicos e emissões de poluentes. São descritos também os procedimentos dos ensaios.

No quinto capítulo são analisados os resultados dos ensaios

No sexto capítulo são apresentadas as conclusões do estudo e sugestões de trabalho que possam aprimorar esse trabalho.

2 Revisão Bibliográfica

Neste capítulo é realizada uma revisão bibliográfica dos principais temas técnicos e informativos relativos ao desenvolvimento do trabalho.

2.1 Introdução

Nas últimas décadas o interesse pela utilização de biocombustíveis na operação de turbinas a gás tem aumentado consideravelmente em virtude de sucessivos aumentos do preço do petróleo, bem como pelas restrições ambientais impostas tanto pelas agencias ambientais de governo quanto pelas clientes dos fabricantes.

Para se analisar a viabilidade da utilização de biocombustíveis como complemento e/ou substitutos dos combustíveis fósseis na geração de energia, devem ser considerados além dos parâmetros de desempenho, as emissões de gases poluentes e CO, NO_x , SO_x , e UHC's, como os de efeito estufa, a exemplo do CO_2 .

Embora não possam ser considerados combustíveis de emissão zero devido à utilização de combustíveis fósseis no seu ciclo de produção, os biocombustíveis têm a vantagem de serem mais limpos em termos de gases de efeito estufa, pois têm o ciclo de carbono fechado. Além do mais não apresentam enxofre na sua composição.

A utilização de biocombustíveis em sistemas de geração distribuída é vantajosa em regiões remotas onde a geração de energia é dependente dos recursos locais e as microturbinas a gás são maquinas térmicas que podem ser utilizadas em geração distribuída de energia elétrica, bem como em cogeração de energia térmica.

As microturbinas a gás podem que operar com combustíveis líquidos e gasosos em alta rotação acopladas a um gerador elétrico para geração de potência elétrica, ou a qualquer outro dispositivos que se queira produzir trabalho de eixo. Embora sua operação seja baseada no ciclo Brayton aberto, algumas microturbinas a exemplo das C30 e C60 produzidas pela Capstone, operam com um regenerador de calor. O regenerador é um trocador de calor posicionado entre o compressor e a câmara de combustão que tem por finalidade elevar a temperatura do ar que sai do compressor utilizando calor residual dos gases de combustão.

O uso de microturbinas a gás para produção de energia em modo de geração distribuída mostra-se como uma grande oportunidade para a economia de energia e redução de emissões de poluentes (BRUNO e CORONAS, 2004). De acordo com VAN DEN BRAENBUSSCHE (2005) houve um crescimento sensível no interesse por essa solução em geração de energia no final da década de noventa e início do século XXI, em decorrência da

alta densidade energética para utilização em sistemas combinados com geração de calor que este tipo de dispositivo propicia.

De acordo com a revista BUSINESS ENERGY (2004), a utilização de microturbinas em geração distribuída iniciou-se comercialmente em 1999, sendo que houve um crescimento considerável de mercado até 2004. As razões para esse crescimento são enumeradas abaixo:

- a) investimento inicial de nível baixo a moderado;
- b) flexibilidade: opera tanto com combustíveis gasoso (gás natural, propano, biogases, etc.) quanto com combustíveis líquidos (diesel, querosene);
- c) reaproveitamento do calor liberado na geração de energia para suprir necessidades de aquecimento e refrigeração em ciclos de cogeração;
- d) emissões extremamente baixas de NOx, CO e SOx;
- e) capacidade de operar mesmo quando há queda de energia da rede, oferecendo grande confiabilidade de energia.

As microturbinas podem ser utilizadas em geração distribuída de energia elétrica e em aplicações onde se tem a necessidade de eletricidade e calor simultaneamente. Sua eletrônica de controle permite que esse equipamento possa operar de maneira automática em paralelo com a rede comercial (GIAMPAOLO, 2006). A Tabela 2.1 mostra algumas aplicações de microturbinas.

Ao se analisar a Tabela 2.2 e a Figura 2.1, percebe-se que a razão de compressão das microturbinas ainda é menor que a dos motores aeronáuticos dos anos sessenta. Esta diferença está relacionada com a necessidade de uma máquina mais simples e de limitações técnicas de se fazer uma turbina de pequeno porte com alta taxa de compressão.

Como consequência da baixa taxa de compressão, a pressão de injeção do combustível também é menor, ou diferencial de pressão de injeção é reduzido também e esse fator deve ser considerado para o projeto do injetor. Uma análise pode ser feita ser compararmos os dados da Tabela 2.3.

Aplicação	Potência
Lojas de conveniência	40 - 50 kW
Restaurantes/postos de gasolina	50 - 70 kW
Supermercados	300 - 2000 kW
Hospitais	100 - 6000 kW
Prédios de escritório	400 - 3000 kW
Fábricas	Acima de 500 kW

TABELA 2.1 – Aplicações de microturbinas (adaptado de GIAMPAOLO. 2006).

TABELA 2.2 – Potência e razão de compressão de algumas microturbinas (adaptado de NASCIMENTO *et al.*, 2015).

Fabricante	Modelo	Potência	Razão de Compressão
-	-	kW	-
Honeywell	Parallon 75	75	3,8
ABB	MT 100	100	4,5
Ingersoll Rand	PowerWorks	70 kW	3
Rover*	1/S60	44,74 kW	2,5
Turbomeca	Paloustre	37,28 kW	3,6

* relatórios de experimento do Laboratório Kwei Lieng Feng do ITA

As três primeiras microturbinas operam com gás natural e as duas últimas com querosene.

FIGURA 2.1– Evolução da razão de compressão por ano de certificação (adaptado de JACKSON *et al.*, 1998)

Na mesma Tabela 2.2 as três primeiras microturbinas operam com gás natural e as duas últimas com querosene.

Fabricante	Modelo	Pressão de	Diferencial de
-	-	kgf/cm ²	kgf/cm²
Honeywell	Parallon 75	8,79	4,87
ABB	MT 100	9,18	4,54
Ingersoll Rand	PowerWorks	3,44	0,35
Rover*	1/\$60	5,20	2,57
Turbomeca	Paloustre	5,20	1,50

TABELA 2.3– Pressão de injeção e diferencial de pressão (adaptado de EPA, 2000; EPA, 2003; NASCIMENTO *et al.*, 2015)

* relatórios de experimento do Laboratório Kwei Lieng Feng do ITA

2.2 Uso de Biocombustíveis em Turbinas a Gás

A crise do petróleo ocorrida em 1973 provocou uma busca global por combustíveis alternativos que possam substituir os combustíveis fósseis derivados desse petróleo. No Brasil foi lançado o Programa Nacional do Álcool (PROALCOOL) com o intuito de estimular a produção de etanol derivado de cana de açúcar como combustível automotivo. A indústria automotiva desenvolveu motores de ciclo Otto para operar com esse combustível, sendo que o programa teve seu ápice em 1986 quando a produção de automóveis a etanol chegou a 96%. (COSTA e SODRÉ, 2010). Os motores multicombustíveis foram lançados no mercado brasileiro em 2003. Esse tipo de motor pode operar com gasolina ou etanol e com qualquer mistura desses dois combustíveis. Em 2009 a produção de veículos com motores ciclo Otto capazes de operar com esses combustíveis chegou a 80%. (MELO *et al.*, 2012). A maioria dos estudos acerca do etanol como combustível substituto e/ou complementar a combustíveis fósseis foi realizada para motores alternativos (BREAUX e ACHARYA, 2013).

No entanto, devido ao interesse na redução de gases de efeito estufa, uma série de estudos teve início visando avaliar os comportamentos do desempenho e de emissões de poluentes em turbinas a gás. Esses estudos seguiram três caminhos diferentes: utilização de óleos puros como aditivos ao diesel e querosene, utilização de ésteres metílicos e etílicos resultados da transesterificação de ácidos graxos animais e vegetais e por último a utilização de etanol puro como combustível dessas turbinas.

A maior parte do estudo de biocombustíveis em microturbinas a gás foi realizado tanto com misturas de óleos puros e querosene ou diesel quanto pelo produto da transesterificação desses ácidos graxos por reação com etanol e metanol.

Uma revisão sobre a utilização de óleos e esters como combustíveis em turbinas a gás é encontrada em NASCIMENTO *et al.*(2015) e SILVA *et al.*(2013).

LOPP *et al.* (1995) realizaram dois testes com misturas 0/100, 10/90 e 20/80% de biodiesel de soja em proporção com querosene de aviação. O primeiro ensaio foi em uma de APU (Auxiliary Power Unit) Solar T-41M-9A e o segundo em uma turbina Garret TPE-331-3U-303V montada na asa de uma aeronave King Air. Não houve mudanças significativas de desempenho. No teste com a turbina Garret onde foram medidas as emissões de O₂ e CO₂ notou-se um decréscimo de 1,5% para o querosene puro para 0,25% com a utilização de B20. MIMURA (2003) estudou o desempenho e as emissões de uma microturbina alimentada com biodiesel obtido de óleo de cozinha usado, observando emissões de 6 ppm de CO, 23 ppm de NO_x e 1 ppm de SO_x

BIST (2004) desenvolveu ensaios sobre a viabilidade da utilização de biodiesel derivado de óleo de soja como complemento de querosene de aviação. Houve aumento de consumo de 7% para B20 e de 10% para B30. Observou-se uma diminuição da eficiência de combustão e consequente aumento nas emissões de CO. Houve aumento nas emissões de NO_x.

SCHMELLENKAMP e DIELMANN (2004) estudaram a operação de uma microturbina de 30 kW em relação ao desempenho e às emissões. A microturbina foi alimentada com óleo de Colza. O consumo aumentou 12% quando se utilizou B30, ouve aumento nas emissões de CO, exceto para a mistura B10.

WENDIG (2007) da Universidade de Rostock (Alemanha) fez um estudo utilizando três tipos de biodiesel uma micro turbina Deutz T216 de 75 kW. Todos os ésteres metílicos (RME, SME E AfME) tiveram performance aceitável. A potência total os ésteres mostraram aumento nas emissões de CO e CO₂ em relação ao diesel e as emissões de NO_x mantiveramse próximas as do Diesel caíram 55%. Observou-se problemas relacionados às características corrosivas dos esteres.

Também utilizando uma microturbina de 30 kW, CORRÊA (2006) realizou ensaios utilizando-se biodiesel de óleo de mamona e diesel. Foi necessário pré-aquecer o combustível para diminuira a viscosidade. Quando se utilizou B100 o consumo específico aumentou 21%. Observou-se diminuição nas emissões de CO e NO_x

SILVA *et al* (2013) realizaram ensaios em uma microturbina Rover 1/S60 operando em misturas de biodiesel de origem animal e querosene de aviação. Observou-se aumento no consumo específico, diminuição nas emissões de CO₂, CO e NO_x.

Mais recentemente CAZAVERE *et al.* (2014) avaliaram a operação de vários tipos de óleo puro (colza, soja e girassol) e em uma turbina Solar T-62T-32. Não houve mudança significativa de desempenho, porém houve aumento da presença de CO, porém as emissões de NO_x mantiveram-se praticamente as mesmas.

Em todos os ensaios citados nos parágrafos anteriores deste item, o biodiesel utilizado foi metílico, exceto nos ensaios de CORREA (2006) e SILVA (2013) que utilizaram biodiesel de rota etílica. Em todos os ensaios a utilização de bicombustível se mostrou viável tecnicamente quanto ao desempenho e emissões de poluentes.

Segundo o *site* da União da Indústria de Cana de Açúcar, UNICA (2015), o Brasil produziu cerca de 28 milhões de litros de etanol na safra 2013/2014 entre EAC e EHC. Esse fato mostra o potencial nacional de utilização desse combustível na operação de plantas termelétricas.

Como segundo maior produtor de etanol mundial e o maior exportador do produto, o Brasil será beneficiado por incorporar este biocombustível altamente eficiente, o qual oferece uma alternativa de geração de eletricidade com emissões reduzidas, quando comparada ao diesel e ao próprio gás natural, ou outros combustíveis fósseis. Os benefícios ambientais do uso de etanol de cana-de-açúcar são substanciais:

GÖKALP e LEBAS (2004) e GUPTA *et al.* (2010) analisaram vários combustíveis com possibilidade de complementar ou substituir os combustíveis originais de projeto em turbinas a gás e propõem que entre esses combustíveis a utilização de etanol deve ser considerada.

Segundo a UNICA (2007) a produção e o uso do etanol combustível no Brasil, desde 1975, constituem o mais importante programa de combustível comercial renovável implementado no mundo até hoje.

O etanol é um álcool primário constituído por dois átomos de carbono, cinco de hidrogênio e um radical hidroxila (C_2H_5OH). Diferentemente dos outros combustíveis comerciais que são misturas de vários tipos de HCs, o etanol é uma substância pura.

Na sua forma anidro, também conhecido como álcool etílico anidro, ou ainda etanol anidro combustível (EAC), diferencia-se do etanol hidratado combustível (EHC) pela quantidade de água presente na sua composição. Na produção industrial o EHC é o produto que sai diretamente do processo nas colunas de destilação. A desidratação do EHC é um processo complementar para a produção de EAC.

As especificações do EAC (Etanol Anidro Combustível) e do EHC (Etanol Hidratado Combustível) são estabelecidas pelo Regulamento Técnico ANP No 7/2011 da Resolução ANP No 36, DE 09-02-2011. A Tabela 2.4 mostra as principais especificações desses combustíveis.

O EAC não pode ser comercializado diretamente ao consumidor. É utilizado como mistura na gasolina pura (gasolina A). Para a produção de gasolina C são misturados de 20 a 25% de EAC. O EHC é comercializado diretamente nas bombas ao consumidor final.

Em 2007 cerca de 80% da produção de etanol era direcionada ao uso combustível, 5% ao uso alimentar e 15% para exportação (ÚNICA,2007).
Característica	EAC	EHC	Unidade
Cor	Alaranjado	Incolor	
Massa específica a 20°C	791,5 máx.	807,6 a 811	kg/m³
Teor alcóolico (volume)	99,6 min.	91,5 a 96	%vol
Teor alcóolico (massa)	99,3, min.	92,6 a 93,8	% massa
Teor de etanol, min.	98,0	94,5	%vol
Teor de água, máx.	0,4	4,9	%vol

TABELA 2.4 – Especificações principais do EAC e do EHC (ANP 7:2011)

A experiência no Brasil em relação à utilização de etanol hidratado como combustível de turbinas a gás em escala real se resume a três projetos: a montagem da Usina Termelétrica de Juiz de Fora, a montagem do protótipo TR3500 pelo ITA e pela empresa Polaris e a tentativa do desenvolvimento da Turbina TVSE5000 pela VSE (Vale Soluções em Energia).

Conforme explicado na motivação deste trabalho, a cooperação entre a Petrobras e a General Electric possibilitou a implantação da Usina Termelétrica de Juiz de Fora (UTE-JF) em Minas Gerais. A UTE-JF opera com duas turbinas aeroderivativas GE-LM6000, alimentadas com gás natural e possui capacidade de 87 MW. Foi realizada a conversão de apenas uma turbina para operar de modo bi-combustível.

As principais alterações realizadas na UTE para que a turbina aeroderivativa LM6000 operasse com EHC comercial estão relacionadas em OLIVEIRA *et al.* (2010), comentadas na sequência.

A conversão da turbina para operação com etanol/gás natural consistiu na troca da câmara de combustão; de dois bicos injetores; montagem da linha de recebimento, armazenamento e distribuição de etanol e atualização do sistema de controle da turbina.

Por ser um combustível com alta volatilidade, uma câmara de combustão mais robusta foi desenvolvida. Dessa forma o etanol passou a ser o combustível primário e o gás natural assumiu o papel de combustível secundário.

Os ensaios foram programados para 1000 h, sendo que 450 h operando com a câmara original e 550 h operando com a nova câmara. O teste foi finalizado após 975 h devido à falta de combustível. O consumo de etanol foi maior do que o estimado.

Também houve a injeção de água desmineralizada para redução das emissões de NO_x . Houve também variação da quantidade de injeção de água para verificar sua influência nas emissões destes óxidos. A emossões de NO_x diminuram de 38,83 para 20,44 ppm corrigidos a 15% de O_2

Como resultado final comprovou-se que o EHC pode ser utilizado como combustível alternativo para UTE's que operam em ciclo Brayton e utilizam turbinas aeroderivativas.

Houve redução na utilização de água desmineralizada em relação à operação com gás natural e ainda assim houve redução nos níveis de emissões de NO_x . Não houve emissões de SO_x . As emissões de hidrocarbonetos totais foram da ordem de 2 ppm. Os resultados obtidos para material particulado ficaram entre 1,1 a 6,3 mg/Nm³. As emissões de aldeídos foram da ordem de ppb (partes por bilhão).

A nova câmara mostrou-se mais apta a operar com etanol como combustível primário e a original para trabalhar principalmente com gás natural. A estimativa de vida útil da TG é equivalente à da operação com diesel.

A potência máxima e a eficiência térmica foram equivalentes tanto na operação com gás natural quanto na operação com EHC.

Através de uma parceria entro o ITA e a empresa de tecnologia Polaris e apoiado financeiramente pela FINEP, desenvolveu em São José dos Campos – SP, no Laboratório de Combustão, Propulsão e Energia do ITA, o protótipo de motor turbojato TR3500 operou com etanol em ensaios de laboratório. A TR3500 é um turbojato desenvolvido para fornecer até 3500 N de empuxo nas condições ISO e tem como combustível de projeto o querosene de aviação. Tal protótipo foi desenvolvido com um sistema de injeção onde o combustível é injetado em um sistema de vaporização interno à câmara de combustão, chamado muitas vezes de "cachimbo". Este sistema de injeção, apesar de ser menos eficiente em termos de atomização, mas permite com facilidade o uso de diversos combustíveis. Em 2010 este protótipo foi ensaiado com etanol e mostrou-se que não há alteração no desempenho do motor quando esta troca de combustível é feita. Citar como referência (LACAVA e MACIEL, 2010)

Usando como modelo o turbogerador Centaur 50 da Solaris, a empresa Vale Soluções em Energia - VSE iniciou o projeto do turbogerador TVSE 5000 que seria capaz de produzir 5 MW de potência elétrica medida nos bornes do gerador síncrono. Apoiado pela mineradora Vale. o projeto foi abortado em função da crise do minério em 2012. Em relação à operação de microturbinas utilizando EHC, os ensaios pioneiros no Brasil aconteceram no Laboratório de Turbinas a Gás e Gaseificação da Universidade Federal de Itajubá - UNIFEI (NASCIMENTO e SANTOS, 2010). Os ensaios foram realizados em uma microturbina Capstone, modelo C30, capaz de produzir 30 kW operando em um ciclo Brayton regenerativo, operando com óleo diesel. Neste ensaio a operação com etanol foi comparada com a do combustível original. O eixo do compressor da C30 é acoplado diretamente a um gerador de magneto permanente que permite medir a geração de energia por meio de um sistema supervisório fornecido pelo fabricante. O ensaio demonstrou que o consumo específico do EHC é maior que o de diesel em todas as condições de carga, resultado esperado devido o menor poder calorífico do álcool. Porém o consumo específico do diesel diminuiu com o aumento da carga, demonstrando aumento da eficiência térmica da máquina. Esse comportamento se repetiu quando o EHC foi utilizado. No entanto a operação com etanol mostrou valores de eficiência térmica menores que os encontrados para o diesel em todas as condições de carga.

As emissões de CO se mostraram superiores na operação com etanol. Esse comportamento pode ser explicado pelo fato do poder calorífico do EHC ser inferior ao do diesel, resultado em maior consumo específico e consequente menor tempo de residência na câmara de combustão. O menor tempo de residência provavelmente causa uma diminuição na capacidade da reação de combustão se completar.

Ao contrário do comportamento do CO, as emissões de NO_x se mostraram menores quando se operou com etanol.

ALFARO-AYALA *et al.* (2013) estudaram de forma numérica e analítica experimental a utilização de três combustíveis em uma câmara de combustão de uma turbina a gás industrial: gás natural, diesel e etanol. A câmara é de uma turbina tipo *heavy-duty* de 50 MW, em que o compressor de 17 estágios entrega 216 kg/s de ar para uma razão de compressão de 7:1. A altura do combustor é de 6,4 m com diâmetro de 3 m. (o que significa altura do combustor)

Três condições foram consideradas: reação estequiométrica para determinação da temperatura de chama adiabática, determinação da TIT (Temperatura de Entrada na Turbina) por meio da mesma vazão de combustível e determinação da TIT por meio da equalização de energia entre os combustíveis. O gás natural foi considerado como metano, o diesel como decano e o etanol como anidro. A combustão foi considerada completa e o nitrogênio como gás inerte.

Os resultados mostraram que a maior temperatura de chama adiabática, calculada na estequiometria, é do diesel (2399 K), seguida pelo gás natural (2330 K) e a menor foi a do etanol (2295 K). Considerando-se a mesma vazão de combustível (EAF) a maior TIT foi obtida pelo gás natural (1239 K) seguida pelo diesel (1178 K) e depois pelo etanol (938 K).

Entretanto mantendo-se a quantidade de energia (EAE) por meio do aumento da vazão de combustível a TIT obtida tanto pela operação com diesel quanto pela com etanol ficaram bem próximas às do combustível original. A TIT obtida pela operação com etanol (1252 K) é levemente maior que a obtida com o gás natural. A máxima TIT permitida é de (1273 K) o que significa que a utilização do biocombustível não deve provocar danos às palhetas do primeiro estágio da turbina.

Ainda, considerando a EAF, a potência obtida com o gás natural foi de 45,87 MW seguida pela operação com diesel 40,62 MW e finalmente pela alcançada com etanol 20,15 MW. A eficiência térmica atingida foi respectivamente: 27,35%, 36,74% e 22,09%. Porém, quando se considera o aumento da vazão de combustível para equidade da energia térmica oferecida, os resultados superam os obtidos com o combustível original: 47,65 MW e 27,57% para o diesel e 48,53 MW e 27,95% para o etanol. Nota-se que ao suprir a mesma quantidade de energia, os melhores resultados são obtidos na operação com etanol. Esse fato se deve ao aumento da vazão gases que se expande na turbina.

Quanto a análise de emissões em EAF, a fração molar de CO_2 diminuiu partindo-se do diesel, seguindo para o gás natural e apresentando menores valores para o etanol. Nas emissões de H₂O as posições do diesel e do gás natural se inverteram; porém, a presença de água nos produtos de combustão é menor também quando se opera com etanol. Contudo, quando se analisa por EAE, a presença de CO_2 e H₂O é maior para o etanol.

Nos dois casos a presença de CO nos gases de escape é mínima e pode ser desconsiderada.

As emissões de NO_x corrigidas para 14,4% de O₂ mostraram que os maiores valores caíram de 2853 ppm para o diesel para 941 ppm para o gás natural chegando a 19,28 ppm quando se considera EAF. Quando se considera EAE os valores mudam para 2233, 941 e 71 ppm respectivamente.

Por fim ALFARO-AYALA *et al.* (2013) concluem que se considerando EAF, o desempenho original do motor (com gás natural) não pode ser mantido simplesmente pela substituição do combustível. Entretanto nessa condição haverá problemas em relação à emissão de NO_x . Porém quando se considera EAE, os três combustíveis satisfazem os requisitos de TIT, potência e eficiência térmica. As emissões de CO_2 para o diesel e para o etanol são muito próximas e aproximadamente 19,5% maiores que as do gás natural. A vantagem do etanol é que por ser um combustível de origem vegetal cumpre o ciclo do carbono em apenas um ano, ao contrário dos outros combustíveis que são fósseis.

Outra vantagem do etanol é a menor formação de NO_x térmico, pois a temperatura na câmara de combustão é menor quando se utiliza esse combustível. A redução de NO_x é de 65% comparada ao gás natural e 92% quando comparada ao diesel.

KHALIL e GUPTA (2013) estudaram a formação de CO e NO_x em uma câmara de combustão de turbina a gás de bancada para vários combustíveis gasosos e líquidos. Não foi utilizado dispositivo para a atomização dos combustíveis líquidos. Os combustíveis líquidos (etanol e querosene) foram vaporizados de forma que o combustor fosse alimentado com ar e combustível pré-misturados. As emissões foram coletadas em razão de equivalência variando de 0,5 a 0,8 em passos de 0,1. A intenção do estudo é propor uma câmara de combustão de baixa emissão de poluentes; porém, é possível apenas comparar as emissões de CO e NOx para operação com cada combustível.

As emissões de NO_x para o querosene foi maior que as coletadas para o metano e para o etanol. Porém a presença desse poluente só é menor para o etanol quando comparado com o querosene na condição de razão de equivalência com valor de 0,8. Nas outras condições o comportamento para o metano e para o etanol são extremamente próximas.

Na análise do CO, as emissões foram maiores para o querosene, seguido pelo etanol e finalmente para o metano.

2.3 Projeto de Turbinas a Gás

Uma descrição básica sobre o processo de projeto de turbinas a gás (TG) pode ser encontrada em SARAVANAMUTTOO (2009).

O projeto mecânico é a base do desenvolvimento de uma TG. Em uma primeira fase os engenheiros e projetistas mecânicos desenvolvem um primeiro esboço da configuração do sistema antes de discutir com os termodinamicistas e aerodinamicistas. O trabalho de desenvolvimento é iterativo. Na realidade o processo envolve repetidas fases de síntese (desenvolvimento propriamente dito) e análise (avaliação do projeto desenvolvido) suportada por uma campanha intensiva de ensaios até que uma configuração ótima seja atingida. Um fluxograma típico de processo de desenvolvimento de turbinas a gás é mostrado na Figura 2.2.

FIGURA 2.2– Procedimento típico de turbina a gás (adaptado de SARAVANAMUTTOO *et al.*, 2009)

O processo se inicia com a definição dos requisitos de projeto, relatados em uma especificação técnica. No desenvolvimento de uma TG industrial os requisitos podem ser obtidos por normas como a API 616 – Combustion gas turbines for refinery servisse ou ISO 2314 – Specification for gas turbines acceptance tests.

Para microturbinas de baixa potência uma opção é utilizar um sistema turbocompressor de uso automotivo, especialmente de motores Diesel de grande porte. Uma vez que as características de desempenho do compressor e da turbina já estão determinadas pelo fabricante do turbocompressor, a solução de desenvolver a microturbina partindo-se desse tipo de turbomaquinaria mostra-se viável do ponto de vista técnico e de baixo custo de desenvolvimento.

Os trabalhos apresentados por RIBEIRO (2003), TSAI (2004) e SILVA e LACAVA (2013) partem da montagem de um conjunto compressor/turbina de um turboalimentador

automotivo para desenvolver microturbinas na fase de projeto preliminar. Nestes casos, o projeto se concentra no desenvolvimento da câmara de combustão, sistemas de injeção de combustível e controle da méquina.

Turbocompressores automotivos são equipamentos utilizados no setor automotivo para aumentar a potência dos motores sem um aumento significativo de peso. São compostos pela montagem de um compressor e uma turbina conectados por um eixo solidário. A função do compressor é aumentar a pressão e a massa específica do ar ambiente que é admitido pelo motor alternativo. Dessa forma uma maior quantidade de combustível pode ser queimada em função da maior vazão mássica de ar admitido. Os gases que saem do coletor de exaustão expandem na turbina transferindo trabalho ao compressor pelo eixo solidário.

Uma microturbina pode ser montada ao se instalar uma câmara de combustão entre a saída do compressor e a entrada da turbina. Uma vez que os parâmetros de vazão mássica de ar, razão de compressão e eficiência podem ser obtidas nos mapas de desempenho do compressor e da turbina, a análise aerodinâmica desses componentes não precisa ser realizada pelo engenheiro de desenvolvimento. Porém devem ser previstos sistemas auxiliares de partida, lubrificação, instrumentação e controle. Outra vantagem é que a análise de tensões e vibrações que já foi realizada pelo fabricante do turbo-compressor.

Neste caso, para o projeto da câmara é feito definindo o ponto de projeto pela análise termodinâmica do gerador de gases a partir dos mapas de desempenho do compressor e da turbina.

Para o presente trabalho, a descrição dos princípios básicos, conceito de tecnologia e o estudo analítico da câmara de combustão projetada para ser instalada entre o compressor e a turbina são discutidos detalhadamente na primeira parte do Capítulo 3 e a validação do projeto é apresentada no Capítulo 5.

2.4 Câmara de Combustão de Turbinas a Gás

As câmaras de combustão de turbinas a gás são, em geral, divididas em três zonas principais: zona primária, zona secundária (intermediária) e zona de diluição, conforme apreebtado na Figura 2.4.

FIGURA 2.3 - Configuração básica de uma câmara de combustão (adaptado de LEFEBVRE e BALLAL, 2010).

A principal função da zona primária é ancorar a chama permitindo que haja tempo, temperatura e turbulência suficientes para que a combustão ocorra com a melhor eficiência possível. Para que isso ocorra, a zona primaria deve criar uma zona onde há reversão do escoamento de ar, que gera uma recirculação do escoamento dos gases de combustão em forma toroidal (zona de recirculação) de maneira que a energia térmica desses gases seja suficiente para ignitar a mistura reagente que se forma desde a injeção de combustível.

Se a ocorrer dissociação t na zona primária, devido à alta temperatura, há geração significativa de monóxido de carbono (CO) e hidrogênio (H₂) nos produtos de combustão. A passagem rápida destes produtos diretamente para uma zona de diluição causaria um "congelamento" das reações de oxidação e esses gases seriam descarregados para o ambiente, causando um desperdício de energia, seja que esses gases são combustíveis, além de problemas ambientais.

A função da zona secundária, ou zona intermediária, é gerar uma região de temperatura intermediária que permita que a combustão de CO, H_2 e de quaisquer UHC seja completada antes que os produtos cheguem à zona de diluição. Para isso é injetado ar adicional para aumentar as chances dessas oxidações ocorram.

O papel da zona de diluição é admitir o ar restante, já com os requisitos de combustão e arrefecimento atingidos, e fornecer um escoamento de saída dos gases com uma distribuição de temperatura que seja aceitável para a turbina. Essa distribuição de temperatura é conhecida como Qualidade Transversal (TQ) e será discutida adiante.

2.5 Injeção do Etanol

Para que a microturbina operasse com etanol, foi necessário projetar e construir um sistema de injeção de combustíveis líquidos para alimentar a câmara de combustão. Foi escolhido um atomizador do tipo *pressure-swirl simplex*.

A atomização do combustível líquido na injeção tem um papel fundamental na eficiência de combustão. Resume-se ao processo de quebra do filme líquido que emerge do injetor em pequenas gotas com o objetivo de aumentar a área de contato com o meio aquecido, para aumentar a taxa de vaporização do combustível, facilitando e acelerando a mistura entre os reagentes.

No processo de atomização um filme ou jato líquido é desintegrado tanto pela própria energia cinética do combustível quanto pela sua exposição ao ar ou a um gás que possua alta velocidade relativa com o escoamento do líquido (LEFEBVRE, 1989)

Em sistemas de combustão a redução para um tamanho médio de gotas provoca maior liberação de calor por unidade de volume, facilidade de ignição, maior campo de inflamabilidade e, em determinadas circunstâncias, menores taxas da formação de poluentes.

O desenvolvimento da desintegração de um filme líquido é mostrado na Figura 2.3. Em um injetor do tipo *pressure-swirl simplex* o líquido a ser atomizado entra em uma câmara de turbilhonamento através de um número definido de canais ou fendas tangenciais.

Na câmara de turbilhonamento o escoamento é induzido a assumir uma alta velocidade angular. As forças decorrentes desse movimento angular provocam a aproximação do escoamento às paredes da câmara, induzindo ao aparecimento de uma região central com ar a baixa pressão.

Ao sair do atomizador, a composição das velocidades angular e axial provoca o espalhamento do filme, formando um cone oco à jusante do orifício de saída. A Figura 2.6 mostra um esquemático do injetor tipo *pressure-swirl simplex*.

O ângulo de cone pode variar de 30° a 180°, sendo que a atomização mais fina ocorre em ângulos mais abertos e maiores pressões de injeção. Conforme pode ser visto na Figura 2.7 no primeiro momento em pressões mais baixas ocorre um gotejamento do líquido na saída do atomizador.

Conforme a pressão aumenta, o escoamento assume a forma de um pincel distorcido.

No terceiro estágio já aparece a formação de um cone, porém devido à ação da tensão superficial este cone é contraído em uma bolha.

No quarto estágio o spray já existe em forma de uma tulipa, mas ainda há formação de gotas grandes.

No quinto estágio a superfície curvada forma uma folha cônica. Esta folha torna-se instável devido aos efeitos de tensão superficial, rompendo-se em ligamentos instáveis que também se rompem em finas gotas.

FIGURA 2.4 – Desenvolvimento da atomização (adaptado de MALY, 2014)

FIGURA 2.5 – Injetor tipo pressure-swirl (adaptado de LEFEBVRE, 1989)

LEFEBVRE (1989) descreve o desenvolvimento do spray em um atomizador *pressure-swirl* em cinco etapas de acordo com o aumento da pressão de injeção.

FIGURA 2.6 – Desenvolvimento do spray em um injetor tipo *pressure swirl* (adaptado de LEFEBVRE, 1989)

Segundo PEREZ (2007) nos queimadores de combustíveis líquidos o tamanho de gotas do *spray* é distribuído em um amplo espectro sendo necessária a utilização de métodos estatísticos para descrever sua função de distribuição.

No estudo de tamanho médio de gotas para injetores do tipo *pressure-swirl* normalmente tem sido utilizado o Diâmetro Médio de Sauter (SMD – *Sauter Mean Diameter*), também conhecido como D_{32} . Este tipo de diâmetro representativo foi utilizado em trabalhos realizados por COUTO *et al.* (2009), MISHRA e REDDY (2006), DURDINA *et al.* (2014) e MARCHIONE *et al.* (2007)

LEFEBVRE (1989) define o SMD como o diâmetro em que a razão superfície/volume é igual a de todo o spray e é calculado pela Equação 2.1.

$$SMD = \frac{\sum_{i=1}^{N} d_i^3}{\sum_{i=1}^{N} d_i^2}$$
 2.1

A principal influência do diâmetro médio das gotas nas emissões de CO é resultado do volume necessário para a evaporação do combustível. Em operações de baixa carga uma proporção significativa do volume total de combustão é usada para a evaporação do combustível. Em consequência disso um volume menor no reator é utilizado para a reação

química propriamente dita. Nessas condições as emissões de CO são as mais altas possíveis (LEFEBVRE e BALLAL, 2010).

Outro efeito é que nessas condições, carga baixa ou parcial, a pressão de injeção do combustível é menor, o que provoca o aparecimento de gotas maiores.

Um dos fatores mais importantes na combustão na taxa de mistura dos reagentes e a qualidade do *spray* de combustível líquido. As gotas evaporam após a atomização permitindo que o combustível e o oxidante interajam de maneira mais eficiente. Quanto menor for o tamanho da gota, mais intensa é a taxa de mistura entre os reagentes, reduzindo a quantidade de CO formado (CARVALHO JR e LACAVA, 2003).

A forma que o tamanho da gota influencia a formação de NO_X é bastante dependente da razão de equivalência. Este comportamento é demonstrado nos trabalhos conduzidos por RINK e LEFEBVRE (1989a e 1989b) onde o tamanho médio das gotas pode ser variado independentemente de outras variáveis de operação em combustores de escoamento contínuo. A Figura 2.9 mostra que as emissões de NO aumentam com o aumento do SMD, principalmente em baixas razões de equivalência.

FIGURA 2.7 – Emissão de NO em relação à razão de equivalência por SMD (adaptado de LEFEBVRE, 1989)

O aumento do SMD significa que uma grande proporção do número total de gotas no *spray* é capaz de queimar como uma chama de envelope. Nesse tipo de chama, as gotículas menores envolvem as maiores queimando de modo difusivo em condições próximas à estequiometria.

Esse fenômeno provoca regiões de alta temperatura na região de chama onde se favorece a formação de NO_{x.} A redução do tamanho das gotas evita a formação do envelope

na chama de maneira que uma maior proporção da combustão total ocorra de maneira prémisturada, diminuindo a formação de NO_x (LEFEBVRE e BALLAL, 2010).

BALLESTER e DOPAZZO (1994) realizaram um estudo experimental sobre a influência da atomização na combustão de óleo pesado em um atomizador *pressure swirl* e chegou à conclusão que no *spray* que apresentou gotas mais finas as concentrações de CO e UHC se apresentaram em menor grau. Esse fenômeno se deve ao fato que no *spray* com maiores diâmetros de gotas o tempo de evaporação é maior.

A lentidão da evaporação que acontece no *spray* de maiores gotas provocou a menor presença de NOx (314,3 ppm contra 487,8 ppm). Nesse caso, como o óleo pesado tem presença de nitrogênio, o núcleo do *spray* rico em combustível favorece a conversão desse nitrogênio atômico em N₂ em detrimento à oxidação para NO_X.

As emissões de carbono não queimado tanto na forma sólida quanto na gasosa é menor no *spray* mais fino (310 mg/Nm³ a 584,3 mg/Nm³). O menor diâmetro da gota e a alta presença de oxigênio disponível nas partículas desse *spray* explicam a melhor eficiência de queima. A comparação entre as características do *spray* mostra que o diâmetro da gota é reduzido para aproximadamente um terço durante o processo de craqueamento do combustível.

De acordo com COUTO *et al.* (2009) o diâmetro das gotículas deve se situar entre 20 e 100 μ m. É nessa faixa que a penetração do combustível no oxidante se mostra mais adequada pois se as gotículas forem menores que 19 μ m acontece uma alta concentração de combustível nas proximidades do injetor provocando o aparecimento de fuligem na exaustão. Se as gotículas são maiores que 100 μ m o tempo de vaporização aumenta, o que implica na necessidade de um maior volume da região de queima.

O ângulo de cone do *spray* produzido por injetores *pressure-swirl* tem uma importância primordial no processo de combustão em turbinas a gás. Nas câmaras de combustão desse tipo de equipamento o ângulo de cone tem influência na performance de ignição, nos limites de inflamabilidade e nas emissões de UHC e fumaça (LEFEBVRE,1989).

O ângulo de abertura do spray deve ser dimensionado de maneira a respeitar as limitações dimensionais da câmara de combustão. Como no projeto de turbinas a gás sempre há necessidade de se obter combustores com o tamanho minimizado, em função da redução de perda de pressão no combustor, o maior ângulo do spray lança o combustível em uma região da zona de recirculação mais próxima ao injetor, permitindo a redução no comprimento da câmara.

Além da consideração dimensional, o fato de ser um cone oco, o spray provoca melhor interação do combustível com o ar circundante. Normalmente o aumento do ângulo de abertura do spray induz à maior interação entre combustível e oxidante, promovendo a melhor mistura entre os reagentes (MISHRA e REDDY, 2006).

CHEN *et al.* (1992) mostraram que o ângulo de abertura do cone aumenta continuamente com o aumento da pressão tendendo a um comportamento assintótico nas pressões mais elevadas.

Entre os fatores que influenciam a abertura do *spray* estão a pressão de injeção, as características geométricas do injetor, as propriedades do combustível e as propriedades dos gases circundantes.

Desconsiderando-se a viscosidade do líquido as dimensões que mais influenciam na abertura do cone são: a área dos orifícios de entrada (A_{ct}), o diâmetro da câmara de vórtice (D_{cv}) e o diâmetro de saída do injetor (D_{si}).

RIZK e LEFEBVRE (1985) estimaram valores de abertura do cone para diferentes características geométricas do atomizador. Os resultados entre os valores previstos e os experimentais demonstraram boa concordância e a conclusão do trabalho é que o aumento do orifício de descarga provoca um aumento no ângulo do *spray*. O diâmetro de saída tem maior influência no cone que a pressão de injeção.

O aumento do diâmetro do canal tangencial provoca uma diminuição na abertura do cone enquanto que o aumento do diâmetro do canal de vórtice provoca um aumento dessa abertura.

Esses efeitos podem ser atribuídos diretamente às mudanças no escoamento e na relação entre as velocidades axial e tangencial.

As três propriedades físicas do líquido analisadas na inclinação do cone são: tensão superficial, massa específica e viscosidade dinâmica.

A tensão superficial não tem efeito na abertura do *spray* e esse fato foi confirmado experimentalmente por GIFFEN e MASSEY (1950) E WANG e LEFEBVRE (1986).

A o aumento da massa específica causa um leve aumento do ângulo (RIZK e LEFEBVRE, 1985).

A viscosidade é a propriedade que mais influencia na abertura do *spray*. A viscosidade causa um gradiente de velocidade no escoamento tanto pela fricção interna do próprio fluido quanto pela fricção entre o líquido e a superfície do injetor.

Esse gradiente de velocidade provoca a diminuição da velocidade tangencial, sendo que esse efeito aumenta com o aumento desde a parede do orifício de saída até o núcleo de ar. Quanto maior a viscosidade maior vai ser essa diferença de velocidade tangencial.

O aparecimento de uma camada limite entre o fluido e as paredes do atomizador também causará mudança nesse escoamento e dessa forma o aumento da viscosidade causa uma diminuição no ângulo do cone.

O estudo publicado por ORTMAN e LEFEBVRE (1985) mostra que o aumento da pressão ambiente tende a diminuir o ângulo. Esse efeito acontece de forma mais acentuada em pressões próximas à atmosférica e chega a um valor onde deixa de ter influência nessa característica.

Vários estudos resumidos em LEFEBVRE (1989) demonstram que o *spray* tende a se fechar quando a pressão de injeção é aumentada. COUTO *et al.*(2009) observaram efeito contrário.

O projeto do atomizador tipo *pressure-swirl* desenvolvido para injetar etanol na câmara de combustão nas condições de projeto é apresentado detalhadamente na segunda parte do Capítulo 3 e os resultados de vazão mássica, SMD e ângulo de *spray* no Capítulo 5.

3 Projeto da Bancada

Este capítulo descreve o projeto da bancada utilizada para a análise da combustão do EHC.

O equipamento foi desenvolvido pelo projeto e construção de uma câmara de combustão tubular e de escoamento reverso fundamentado pelos métodos de MELCONIAN e MODAK (1985) e LEFEBVRE (2010). Descreve também o projeto de um injetor do tipo *pressure-swirl* embasado nos métodos de ALVES e LACAVA (2009).

À descrição dos métodos é seguido o desenvolvimento dos projetos.

3.1 Introdução

O projeto da câmara de combustão começa pela definição dos requisitos de projeto para todas as condições de operação e pela seleção do tipo de combustor conforme mostra a FIGURA 3.1adaptada de MELCONIAN e MODAK (1985).

A microturbina é constituída pela adaptação da câmara de combustão em um compressor modelo 110/55 AQM que equipa o turbocompressor automotivo Swchitzer S500 e uma turbina 87PJ1 que equipa um turbocompressor automotivo Swichtzer S400. O compressor e a turbina são centrífugos e de estágio simples.

A câmara de combustão é tubular e a escolha do escoamento reverso permite que seja utilizado o eixo original do turbocompressor.

O atomizador escolhido é do tipo *pressure-swirl* ou *simplex* pela eficiência e pela simplicidade de usinagem.

O atomizador deve ser concêntrico a um injetor de gas natural, este último utilizado apenas para a partida do gerador de gases. Ao se atingir auto-sustentação a alimentação de gás natural é cortada de maneira a permitir somente o escoamento de etanol.

A vazão de combustível é controlado por uma válvula do tipo agulha e a vazão é medida por um rotâmetro calibrado para esse fim.

Um sistema de alimentação de combustível líquido por pressurização de um reservatório, utilizando N_2 como agente pressurizador, foi construído de maneira a garantir que a pressão na linha seja constante até a montante da válvula de controle.

O projeto seguiu os métodos de MELCONIAN e MODAK (1985), sumarizado na Figura 3.1, e LEFEBVRE (2010). Esses métodos foram descritos para o projeto de câmaras de combustão de grandes turbinas a gás operando com hidrocarbonetos. Entretanto o desenvolvimento ocorreu levando-se em consideração a utilização de álcool anidro.

FIGURA 3.1 - Fluxograma de projeto de uma câmara de combustão

A bancada foi montada e operada no Laboratório de Combustão, Propulsão e Energia do ITA (LCPE/ITA).

3.2 Definição dos parâmetros iniciais de projeto

De acordo com SARAVANAMUTTO *et al.* (2009) o primeiro e mais importante passo para o projeto de uma turbina a gás é o estudo termodinâmico dos pontos de projeto. Não é escopo deste trabalho detalhar os cálculos termodinâmicos do gerador de gases, dessa forma os parâmetros foram determinados pelo programa Gasturb[®] a partir da curva de maior eficiência definida no mapa desempenho do compressor para as rotações de 77000 rpm, 48000 rpm e 64000. A análise termodinâmica e mostrada no Apêndice A.

Diferentemente das condições de atmosfera padrão definidas na norma ISO 2314:2009 e API 616:2011, $T_{amb} = 298,15$ K e $P_{amb} = 101,325$ kPa, o mapa de desempenho do compressor tem como referência $T_{amb} = 298$ K e $P_{amb} = 100$ kPa. Foram considerados os dados constantes no mapa.

Considerou-se que a turbina promova expansão total dos gases até a pressão atmosférica e que não haja perda de carga além daquela definida em requisito para a câmara de combustão. Considerou-se que não há perda de potência por atrito e que a eficiência de combustão é 100%. O projeto preliminar previu uma montagem conforme mostra a Figura 3.2.

FIGURA 3.2 – Montagem da microturbina

VLASSOV (2001) define o valor do Poder Calofífico Inferior (PCI) do etanol anidro em 26170 kJ/kg de maneira que para o EHC esse valor varia com o porcentagem de água em volume (W) de acordo com a Equação 3.1.

$$PCI_{et} = 26170 - 273.W$$
 3.1

Determinou-se os parâmetros termodinâmicos utilizando-se o valor do PCI do etanol anidro

O mapa de desempenho do compressor é mostrado na Figura 3.3. Parâmetros para a análise de desempenho e determinação dos estados termodinâmicos no ciclo foram sumarizados na Tabela 3.1. O mapa completo de desempenho do compressor é exibido no Anexo A.

Conforme orientação do fabricante a temperatura máxima de trabalho da turbina é 923 K. Esse foi o valor definido para a saída da câmara de combustão.

FIGURA 3.3 – Mapa de desempenho do compressor

Parâmetro	Símbolo		Valor		Unidade
Rotação		48	64	77	krpm
Eficiência isoentrópica	η_{comp}	78,70	78,00	75,40	%
Razão de compressão	PR	1,70	2,30	3,10	
Pressão total na saída	P_2	172253	233047	314107	Pa
Pressão estática na saída	p ₂	164922	223129	300738	Pa
Temperatura na saída	T_2	347,94	387,10	433,09	Pa
Vazão mássica de ar	<i>m</i>	340	480	580	g/s
Vazão mássica de combustível	m _{comb}	7,53	9,94	11,03	g/s

TABELA 3.1 - Parâmetros do compressor para a análise de desempenho

3.3 Dimensionamento da câmara de combustão

Uma vez determinadas as condições do ponto de projeto, o projeto da câmara de combustão é desenvolvido seguindo as seguintes fases:

- 1. determinação dos limites teóricos da razão de equivalência;
- 2. determinação da razão de equivalência na zona primária;
- 3. determinação dos limites de extinção de chama na zona primária;
- dimensionamento da área de referência da câmara pelo ponto de vista aerodinâmico;
- dimensionamento da área de referência da câmara pelo ponto de vista da velocidade de queima;
- 6. escolha da área e do diâmetro de referência da câmara de combustão;
- 7. determinação da área e do diâmetro do tubo de chama;
- 8. verificação da perda de pressão global na câmara de combustão;
- 9. estimativa da distribuição de ar e do filme de refrigeração;
- 10. dimensionamento dos comprimentos das zonas da câmara de combustão;

- 11. dimensionamento do difusor;
- 12. dimensionamento do swirler;
- 13. dimensionamento da cúpula e da zona de recirculação;
- 14. determinação do perfil de temperatura nas zonas da câmara de combustão;
- 15. determinação da temperatura média dos gases nas zonas da câmara de combustão;
- 16. análise da transferência de calor nas paredes do tubo de chama e carcaça e
- 17. dimensionamento dos orifícios de admissão do tubo de chama;

3.3.1 Limites Teóricos da Razão de Equivalência.

MELCONIAN e MODAK (1985) sugerem que se adota como limite mínimo de temperatura na zona primária de um combustor queimando hidrocarboneto seja 1600 K para qualquel condição, seja razão de equivalência global pobre ou rica. Isso garante que sempre haverá ignição em qualquer regime de combustão.

Essa consideração assume que não há resfriamento nas paredes do combustor e que a influência da pressão nesse limite é desprezível.

Embora a temperatura mínima de inflamabilidade definida por MELCONIAN e MODAK (1985) seja para hidrocarbonetos, essa temperatura também é sugerida por NAVIA (2010) para o projeto de câmara de combustão de turbina a gás usando etanol como combustível.

Conforme descrito anteriormente a T_{ca} é definida pelo balanço de massa e energia entre os produtos e os reagentes. CARVALHO JR (2002) cita o valor da entalpia de formação do etanol, $h_{f,et} = -277674$ kJ/kmol.

A T_{ca} pode ser determinada pelo programa de cálculo de equilíbrio químico Gaseq, variando-se a razão de equivalência para as condições de pressão e temperatura do reator. Porém nos reagentes do programa não aparece o etanol. Então foi implementada uma rotina para cálculo da T_{CA} em razão da razão de equivalência para o etanol no programa Excel®.

Uma simulação para comparação entre os valores encontrados no programa e na rotina, para a reação de combustão entre metano e ar, foi utilizada para validar o procedimento desenvolvido. A proximidade das curvas mostradas na Figura 3.4 demonstra a validação da rotina e a Figura 3.5 mostra o comportamento da T_{ca} para o etanol nas três condições de projeto.

FIGURA 3.4 - Validação da rotina de cálculo

FIGURA 3.5 - Temperatura de chama adiabática do etanol para as condições de projeto

3.3.2 Razão de Equivalência e Razão Ar/Combustível na Zona Primária.

Uma vez definidas as curvas de comportamento de T_{ca} em relação à ϕ_{gl} para a região pobre nos pontos de projeto podemos definir os limites teóricos da razão de equivalência.

Portanto a razão de equivalência limite do lado pobre da curva é aquela que encontra o valor de temperatura de 1600 K.

Esses limites são demonstrados na Figura 3.6 e na Tabela 3.2.

FIGURA 3.6 - Limites teóricos de razão de equivalência na região pobre

Rotação	φ	T _{ca}
48 krpm	0,50	1610
64 krpm	0,48	1606
77 krpm	0,46	1602

TABELA 3.2- Limites teóricos de razão de equivalência

Uma vez determinados os valores limites de razão de equivalência para se garantir combustão na zona primária é necessário se determinar a razão de equivalência na zona primária. Para a determinação do diâmetro de referência da câmara de combustão, primeiramente deve-se determinar a razão de equivalência na zona primária.

MELCONIAN e MODAK (1985) determinam um valor máximo de razão de equivalência $\phi = 1,5$, para evitar emissões de CO e HCs.

Uma vez determinada a razão de equivalência na zona primária a porcentagem de ar admitida na zona primária conforme demonstra a Equação 3.2

$$\frac{\dot{m}_{zp}}{\dot{m}_{ar}} = \frac{\Phi_{gl}}{\Phi_{zp}}$$
3.2

A razão ar/combustível na zona primária, $f_{ac_{zp}}$, é mostrada na Tabela 3.3.

$$f_{ac_{gp}} = f_{ac_{gl}} \cdot \left(\frac{\dot{m}_{gp}}{\dot{m}_{ar}}\right)$$
3.3

TABELA 3.3- Razão ar/combustível e quantidade de ar

Rotação	$\dot{m}_{zp}/\dot{m}_{ar}$	φzp	φlim	$f_{ac_{zp}}$
48 krpm	30%	0,652	0,50	29,48
64 krpm	30%	0,610	0,48	29,48
77 krpm	30%	0,560	0,46	29,48

Para o projeto foi escolhido o valor de 30%, pois atende a todas as condições de operação.

3.3.3 Área de Referência da Câmara pelo Ponto de vista Aerodinâmico

A área de referência é a seção transversal da carcaça, é utilizada como referência para o cálculo das demais dimensões da câmara. O diâmetro de referência é relativo a essa área. A Figura 3.7 mostra o diâmetro de referência no corte transversal de um combustor.

FIGURA 3.7 – Diâmetro de referência

A área de referência aerodinâmica é definida em termos de perda de pressão por LEFEBVRE e BALLAL (2010), MELCONIAN e MODAK (1985) e SHAKARYANTS (2008) utilizando-se a Equação 3.4.

$$A_{ref,aer} = \left[143, 5. \left(\frac{\dot{m}_{ar} \sqrt{T_2}}{P_2} \right)^2 \cdot \left(\frac{\Delta P_{2-3}}{q_{ref}} \right) \cdot \left(\frac{\Delta P_{2-3}}{P_2} \right)^{-1} \right]^{0,5}$$
3.4

O parâmetro ($\Delta P_{2-3}/q_{ref}$) representa a perda de pressão relativa à pressão dinâmica na entrada da câmara de combustão e está relacionado com a resistência ao escoamento dos gases entre a saída do compressor e a entrada da turbina. É chamado de fator de perda de pressão.

O parâmetro ($\Delta P_{2-3}/P_2$) representa a perda de pressão relativa a pressão total de entrada da câmara de combustão e não inclui a perda de pressão relativa à combustão. Normalmente expressa em porcentagem, seu valor pode variar de 4 a 8% É chamado também de perda de pressão global.

A perda de pressão global depende das condições de operação da câmara de combustão, o fator de perda de pressão é determinado pelas características físicas da câmara de combustão e é definido pela soma entre a perda de pressão relativa ao difusor e à perda de pressão ao longo do tubo de chama.

Os fatores de perda de pressão relativos às pressões dinâmica e estática na entrada do combustor sugeridos por conforme LEFEBVRE e BALLAL (2010) e MELCONIAN e MODAK (1985), para câmaras tubulares, são demonstrados na Tabela 3.4

Com a determinação da área de referência aerodinâmica determina-se o diâmetro de referência pela Equação 3.5.

$$D_{ref,aer} = 2. \sqrt{\frac{A_{ref,aer}}{\pi}}$$
3.5

TABELA 3.4– Parâmetros adimensionais de perda de pressão na câmara de combustão tubular

Referência	$\Delta P_{2-3}/P_2$	$\Delta P_{2-3}/q_{ref}$
MELCONIAN e MODAK (1985)	5,30 %	40
LEFEBVRE e BALLAL (2010)	7,00%	37

Os valores de área e diâmetro de referência calculados são mostrados na Tabela 3.5.

Referência	A_{ref} [m ²]			D _{ref} [m]		
Rotação	48	64	77	48	64	77
MELCONIAN e MODAK (1985)	0,012	0,013	0,012	0,124	0,130	0,127
LEFEBVRE e BALLAL (2010)	0,010	0,011	0,010	0,110	0,120	0,116

TABELA 3.5- Áreas de referência do ponto de vista aerodinâmico

3.3.4 Área de Referência da Câmara pelo Ponto de Vista da Velocidade de Queima.

A teoria da velocidade de queima foi desenvolvida primeiramente por GREENHOUGH e LEFEBVRE (1957) e posteriormente revisada por LEFEBVRE (1966). O modelo foi criado para correlacionar os principais parâmetros de operação (pressão, temperatura e vazão mássica) e as dimensões da câmara de combustão com o desempenho do processo de combustão. Entre as finalidades do estudo estão:

- a) possibilidade de predizer o comportamento da câmara em várias condições de operação a partir de uma quantidade restrita de ensaios,
- b) possibilidade de predizer o desempenho de novos combustores a partir de dados obtidos de câmaras de combustão de desenho semelhante, porém não necessariamente do mesmo tamanho, e
- c) as características de projetos diferentes em tamanho podem ser comparadas facilmente, mesmo que as condições de operação nos ensaios sejam diferentes entre si.

Considera-se a zona de combustão como se fosse um feixe de chama produzido por um bico de Bunsen sob condições de escoamento turbulento. O desempenho de combustão é descrito como a função da razão entre a velocidade de queima turbulenta e a velocidade do escoamento de ar que entra na zona de combustão. Assume-se que todo o combustível que queima, o faz completamente.

Ineficiência na combustão acontece quando parte da mistura passa pela zona de combustão sem ser arrastada pela frente de chama turbulenta.

O modelo consiste na derivação de um parâmetro que demonstre a correlação entre os dados experimentais de eficiência de combustão obtidos com a variação de pressão, temperatura e vazão de ar em vários projetos de câmaras de combustão.

Assim como demonstrado em LEFEBVRE (1966) o parâmetro θ_{η} é derivado da premissa que a eficiência de combustão é a razão entre a energia liberada na combustão e a energia suprida pelo combustível. O parâmetro adimensional (θ_{η}), conhecido como carga aerodinâmica, descrito por LEFEBVRE (1966) é apresentado na Equação 3.6. Observa-se que para valores de θ_{η} superiores à 7,3.10⁷ os valores de eficiência de combustão se aproximam de 100%. Esse foi o valor mínimo de θ_{η} adotado para o cálculo da área de referência nessa etapa do projeto.

$$\theta_{\eta} = \frac{P_2^{1,75} \cdot A_{\text{ref,vq}} \cdot D_{\text{ref,vq}}^{0,75} \cdot \exp\left(\frac{T_2}{b}\right)}{\dot{m}_{ar}}$$
3.6

A Figura 3.7 adaptada de BALLAL e LEFEBVRE (2010) mostra a correlação entre o parâmetro $\theta\eta$ e a eficiência de combustão. A mesma aproximação é considerada em MELCONIAN e MODAK (1985).

Nota-se na Figura 3.8 que o autor assume o fator de correção de temperatura "b" como 300.

Esse valor é apontado como ideal para câmaras com razão ar/combustível (f_{ac}) global de 60, sendo que o valor de 150 deve ser utilizado para f_{ac} próxima a 100.Valores para o fator de correção de temperatura "b" para condições de mistura pobre na zona primária devem ser definidos conforme MELCONIAN e MODAK (1985) na Equação 3.7. Os valores calculados de para o fator de correção de temperatura são mostrados na Tabela 3.6.

$$\mathbf{b} = 245. (1,39 + \ln \Phi_{zp}) \text{ para } 0,6 < \Phi_{zp} < 1,0$$
 3.7

Rotação	48	64	77
φ _{zp}	0,652	0,610	0,560
b	236	219	198

TABELA 3.6– Fator de correção de temperatura

FIGURA 3.8 - Eficiência de combustão (BALLAL e LEFEBRE, 2010).

O valor da razão de equivalência na zona primária deve ser determinado considerandose as condições de limites de inflamabilidade, temperatura de inflamabilidade e emissões de poluentes.

Ainda que desenvolvida na década de sessenta este modelo ainda é utilizado para o desenvolvimento de trabalhos como os de CONRADO (2002), KULSHRESHTHA e CHANNIWALA (2005), SILVA (2006), VISSER *et al.*(2010) e NAVIA (2010).

A Equação 3.6 é resolvida para $D_{ref,vq}$ através de método numérico e pelo seu valor é obtida $A_{ref,vq}$. Os valores de área e diâmetro de referência calculados são mostrados na Tabela 3.7.

Rotação	48	64	77
A _{ref} [m ²]	0,016	0,011	0,007
D _{ref} [m]	0,142	0,118	0,091

TABELA 3.7- Áreas de referência pelo método de velocidade de queima

3.3.5 Escolha da Área e do Diâmetro de Referência da Câmara de Combustão

A partir das análises prévias pelos modelos aerodinâmico e de velocidade de queima, devem ser escolhidos o diâmetro e a área que servirão de referência para o cálculo das dimensões das zonas da câmara de combustão.

A primeira vista parece ser vantajoso que a área do tubo de chama seja a maior possível, pois um aumento no diâmetro do tubo de chama maior provoca uma redução na velocidade do escoamento e um aumento do tempo de residência no tubo de chama. Ambas as alterações nos escoamentos são altamente benéficas para ignição, estabilidade de chama e eficiência de combustão.

Porém, uma vez definida a área da carcaça, o aumento na área do tubo de chama provoca uma redução na área anular entre o diâmetro externo do tubo de chama e a área interna da carcaça. Essa diminuição da área anular provoca um aumento da velocidade nessa região, o que diminui a queda de pressão estática através dos orifícios do tubo de chama.

Este efeito é indesejado, pois a perda de pressão nos orifícios assegura que o jato de ar que entra no tubo de chama tenha penetração adequada e intensidade de turbulência suficiente para permitir uma mistura rápida com os produtos de combustão. (LEFEBVRE, 2010).

Pelo ponto de vita da velocidade de queima a maior área de referência possível garante maior eficiência de queima, portanto deve ser a maior possível. Outro fator que pode acontecer é que a maior área de contato entre o escoamento e o combustor aumenta a perda de carga na câmara, portanto deve ser minimizado. Os valores de D_{ref} calculados são demosntrados na Tabela 3.8.

Dessa forma, ao analisarmos a Tabela 3.8 concluímos que para melhor eficiência de combustão o diâmetro de referência deveria ser $D_{ref} = 0,142$ m e para menor perda de carga por atrito deveria ser $D_{ref} = 124$ m. Dessa forma escolheu-se $D_{ref} = 0,130$ m, como solução de compromisso, pois esse valor garante alta eficiência de combustão e baixa perda de carga para a maioria dos casos.

Rotação	48	64	77
Aerodinâmico	0,124	0,130	0,127
Velocidade de queima	0,142	0,118	0,091

TABELA 3.8 – Comparativo entre os diâmetros de referência

Determinação da Área e do Diâmetro do Tubo de Chama 3.3.6

MELCONIAN e MODAK (1985) sugerem de forma simples que a razão entre a área de referência e a área do tubo de chama para uma câmara tubular simples, é de aproximadamente 70%. SHAKARYIANTS (2008) sugere valores entre 60% e 80% pelo método descrito em LEFEBVRE e BALLAL (2010). A Figura 3.9 mostra o diâmetro do tubo de chama em um combustor típico.

Diâmetro de Referência - D_{ref}

FIGURA 3.9 – Diâmetro do tubo de chama

Realizada essa análise, optou-se pelo valor típico de 70% sugerido por MELCONIAN e MODAK (1985). Os valores de Atc e Dtc são mostrados na Tabela 3.9.

A_{tc} [m ²]	D _{tc} [m]
0,0091	0,11

TABELA 3.9- Área e diâmetro do tubo de chama

3.3.7 Verificação da Perda de Pressão Global e Eficiência de Combustão.

A perda de pressão real na câmara de combustão é estimada rearranjando-se a Equação 3.4 para o valor escolhido para A_{ref}. A perda de pressão na câmara é então determinada pela Equação 3.8.

$$\frac{\Delta P_{2-3}}{P_2} = \left[\left(\frac{R_{ar}}{2} \right) \cdot \left(\frac{\dot{m}_{ar}}{P_2} \right)^2 \cdot \left(\frac{\Delta P_{2-3}}{q_{ref}} \right) \cdot \left(A_{ref} \right)^{-1} \right]^{0.5}$$
3.8

A verificação aerodinâmica é demonstrada na Tabela 3.10. A perda de carga total na câmara de combustão é menor que a sugerida por MELCONIAN e MODAK (1985) e LEFEBRE e BALLAL (2010), portanto os valores de perda de carga verificados atendem ao requisito.

 Referência
 ΔP2-3/P2

 48
 64
 77

 MELCONIAN e MODAK (1985)
 4,56 %
 5,45 %
 4,97 %

 LEFEBVRE e BALLAL (2010)
 4,22%
 5,18%
 4,84%

TABELA 3.10– Perda de carga total $\Delta P_{2-3}/P_2$ calculado para $D_{ref} = 0,13$ m

A verificação da carga aerodinâmica é demonstrada na Tabela 3.11. Nota-se que o parâmetro θ_{η} foi superior a 7,3 x 10⁷ para as duas condições de rotação mais altas, no cálculo realizado pelas duas referências.

Referência	θ_η		
	48	64	77
MELCONIAN e MODAK (1985)	5,40.10 ⁷	8,63.10 ⁷	1,84.10 ⁸

TABELA 3.11 – Carga aerodinâmica calculada para $D_{ref} = 0,13$ m

3.3.8 Estimativa da Distribuição de Ar e do Filme de Resfriamento

Neste estágio é estimada a distribuição de ar ao longo do tubo de chama. A proporção de ar que deve ser utilizada no filme de refrigeração foi determinada experimentalmente por ODGERS (1980) é determinada pela Equação 3.9.

$$\frac{\dot{m}_{refr}}{\dot{m}_{ar}} = 0.1.T_2 - 30$$
 3.9

A quantidade de ar admitida na zona primária foi determinada no início do projeto. A quantidade de ar admitida através dos orifícios da zona secundária deve ser determinada de tal maneira que a razão de equivalência na zona secundária seja menor que $\phi_{zs} = 0.8$.

Portanto a quantidade de ar admitida na zona secundária deve ser determinada pela Equação 3.10

$$\frac{\dot{\mathbf{m}}_{zs}}{\dot{\mathbf{m}}_{ar}} = \frac{\boldsymbol{\varphi}_{gl}}{\boldsymbol{\varphi}_{zs}} - \frac{\dot{\mathbf{m}}_{zp}}{\dot{\mathbf{m}}_{ar}}$$

O restante do ar é a quantidade admitida pela zona de recirculação e deve ser determinada pela Equação 3.11.

$$\frac{\dot{m}_{zd}}{\dot{m}_{ar}} = 1 - \frac{\dot{m}_{zp} + \dot{m}_{zs} + \dot{m}_{refr}}{\dot{m}_{ar}}$$

$$3.11$$

A Tabela 3.12 mostra a distribuição de ar e as razões de equivalência ao longo da câmara de combustão para a condição de projeto.

TABELA 3.12- Distribuição de ar e razão de equivalência na câmara de combustão

2 10

Parâmetro	Vazão de ar [%]			Razã	o de equival	lência
Rotação	48	64	77	48	64	77
Refrigeração	5,96	10,29	14,71	-	-	-
Zona Primária	30,00	30,00	30,00	0,660	0,618	0,567
Zona Secundária	25,58	20,11	16,00	0,439	0,403	0,37
Zona de Diluição	40,47	39,60	39,29	0,186	0,166	0,145

3.3.9 Comprimentos das Zonas da Câmara de Combustão.

Segundo MELCONIAN e MODAK (1985) o comprimento da zona primária (L_{zp}) é relacionado ao D_{tc} em razões de 2/3 a 3/4, sendo que o maior valor está relacionado a uma maior eficiência de combustão. Portanto L_{zp} deve ser determinado conforme a Equação 3.12.

$$L_{zp} = 0.75.D_{tc}$$
 3.12

Da mesma forma os autores sugerem uma razão de 1/2 entre o comprimento da zona secundária (Lzs) e Dtc é considerada apropriada. O comprimento da zona secundária é determinado pela Equação 3.13.

$$L_{zs} = 0,50. D_{tc}$$
 3.13

O comprimento total do tubo de chama (Ltc) é função do fator de perda de pressão dinâmica no tubo de chama (ΔP_{tc} /qref) e do fator de qualidade transversal (TQ), conforme mostra a Equação 3.14 e a Figura 3.10.

$$TQ = 1 - e^{\left(-0.07 \cdot \frac{L_{tc}}{D_{tc}} \cdot \frac{\Delta P_{tc}}{Q_{ref}}\right)^{-1}}$$
3.14

A o fator de qualidade transversal define o quanto a temperatura varia em relação ao perfil. É definido na Equação 3.15.

$$TQ = \frac{T_{max} - T_4}{T_3 - T_4}$$
3.15

Considerando-se que $\Delta P_{tc}/q_{ref}$ seja igual a $\Delta P_{2-3}/q_{ref}$, foram calculados os valores de TQ utilizando-se os valores determinados por MELCONIAN e MODAK (1985) e LEFEBVRE e BALLAL (2010).

Os valores de TQ demonstrados na Tabela 3.13 encontram-se dentro dos limites, de 5% a 30%, sugeridos por NAVIA (2010).

TABELA 3.13– Parâmetros adimensionais de perda de pressão na câmara de combustão tubular e qualidade transversal calculada

Referência	$\Delta P_{2-3}/q_{ref}$	TQ
Melconian & MODAK (1985)	40	14,38%
Lefebvre & Ballal (2010)	37	15,45%

Embora MELCONIAN e MODAK (1985) sugira um método empírico para a determinação de L_{zd} que seja mais conservativo que o proposto por LEFEBVRE e BALLAL (2010), admitem que uma relação entre L_{car}/D_{car} esteja entre 1,5 e 2,2. Para fins de adequação da câmara ao conjunto turbocompressor, admitiu-se o comprimeto do combustor L_{car} =0,230 m, seno que a relação L_{car}/D_{car} para os valores da câmara ficou 1,77.

Uma vez definido o comprimento do tubo de chama, o comprimento da zona de diluição foi definido como o comprimento restante das zonas primária e secundária determinado pela Equação 3.16.

$$L_{zd} = L_{tc} - (L_{zp} + L_{zs})$$
 3.16

FIGURA 3.10 - Relação entre o comprimento do tubo de chama e a zona de diluição em função do fator de perda de pressão e do fator de temperatura (LEFEBVRE e BALLAL, 2010).

Os comprimentos das zonas no tubo de chama são sumarizados na Tabela 3.14.

TABELA 3.14 – Comprimentos das zonas no tubo de chama

Zona Primária	Zona Secundária	Zona de Diluição	Total
0,082 m	0,054 m	0,094 m	0,230 m

3.3.10 Difusor

O difusor é um dispositivo divergente que tem como função desacelerar o escoamento de ar que vem do compressor e aumentar a pressão estática na entrada da câmara de combustão.

O projeto do difusor é geralmente determinado por restrições de espaço do motor. O projeto final apresenta uma solução de compromisso entre essas restrições de espaço, perda de pressão e uniformidade no escoamento que entra na câmara de combustão.

A despeito da importância que representa a presença de um difusor, a configuração compacta da microturbina não permite a montagem de um difusor.
3.3.11 Dimensionamento do Swirler.

Ainda que não haja a presença de um difusor, uma zona de recirculação deve ser criada à jusante do injetor de combustível para propiciar uma estabilização aerodinâmica da chama. Nessa região conhecida como círculo mágico, os gases quentes são recirculados de maneira que o combustível/ar entrante seja continuamente estabilizada e ignitada

Muitos tipos diferentes de padrões de escoamento de ar são empregados, mas uma característica comum a todos é a criação de uma inversão de escoamento toroidal que arrasta e recircula uma porção dos produtos de combustão quente para se misturar com o ar de entrada e de combustível. Os gases desses vórtices são renovados continuamente pelo ar dos orifícios de admissão, complementados pelo ar proveniente dos swirlers e dos orifícios de refrigeração e do ar utilizado para atomização do combustível .

Uma das formas mais eficazes de se induzir a formação da zona de recirculação na zona primária é a instalação de um dispositivo que crie um turbilhão ao redor do injetor, conhecido como *swirler*. A utilização de *swirlers* proporciona regiões de forte cisalhamento, turbulência elevada e altas taxas de mistura entre os reagentes.

BASTOS-NETTO *et al.* (1995) explicam que a utilização de um dispositivo tipo swirler para estabilização da chama é mais interessante que outros dispositivos como corpos rombudos, ou telas, pois o *swirler* gera uma perda de carga menor. Além da vantagem da menor perda de carga, os autores comentam que o posicionamento deste dispositivo em uma região fria, ao contrário dos outros dispositivos que ficam em uma região próxima à frente de chama, evita que o dispositivo sofra com a influência de altas temperaturas

O *swirler* é o dispositivo aerodinâmico utilizado para gerar a turbulência na zona de recirculação. Um *swirler* típico é constituído de pás montadas em ângulo na área circular compreendida entre o diâmetro externo do injetor, e concêntrico a este, e seu diâmetro externo calculado.

A zona de recirculação depende do grau de *swirl*, da perda de carga e do ângulo de divergência da cúpula em que este swirler está posicionado. Desprezando-se os efeitos da admissão de ar secundário, o comprimento da zona de recirculação pode ser estimado como aproximadamente o dobro do diâmetro do swirler.

Conforme descrito em LEFEBVRE e BALLAL (2010) a quantidade se ar que passa pelo *swirler* deve ser tal que seu momento seja igual ao do ar que entra na zona de recirculação pelos orifícios da zona primária. Segundo MELCONIAN e MODAK (1985), baseado em resultados experimentais, a vazão mássica do *swirler* (\dot{m}_{sw}) deve ser entre 3 a 12% da vazão de ar fornecida pelo compressor, o ângulo das pás do *swirler* (α_{sw}) deve ser entre 45° e 70° e o número de pás é tipicamente entre 8 e 10.

Segundo KNIGHT e WALKER (1957), com base em resultados experimentais, o ângulo do escoamento de ar (β_{sw}) pode ser considerado igual ao ângulo das pás do *swirler* e a perda de pressão dinâmica em um swirler com pás finas pode ser obtida pela Equação 3.17:

$$\frac{\Delta P_{sw}}{q_{ref}} = K_{sw} \cdot \left[\left(\frac{A_{ref}}{A_{sw}} \right)^2 \cdot \sec^2 \beta_{sw} - \left(\frac{A_{ref}}{A_{tc}} \right)^2 \right] \cdot \left(\frac{\dot{m}_{sw}}{\dot{m}_{ar}} \right)^2$$

$$3.17$$

O fator de forma das pás do swirler (K_{sw}) é definido como 1,30 para pás retas e 1,15 para pás curvas. A área do swirler (A_{sw}) deve ser determinada pela Equação 3.18, sendo N_{inj} é o número de injetores.

$$A_{sw} = A_{ref} \cdot \frac{\sec \beta_{sw}}{N_{inj} \cdot \sqrt{\left(\frac{\Delta P_{sw}}{q_{ref}} \cdot \frac{1}{K_{sw} \cdot \left(\frac{\dot{m}_{sw}}{\dot{m}_{ar}}\right)^2 + \left(\frac{A_{ref}}{A_{tc}}\right)^2\right)}}$$

$$3.18$$

Onde o fator de perda de pressão dinâmica no swirler é definido pela Equação 3.19.

$$\frac{\Delta P_{sw}}{q_{ref}} = \frac{P_{sw} - P_{tc}}{q_{ref}} = \frac{\Delta P_{2-3}}{q_{ref}} - \frac{\Delta P_{bac}}{q_{ref}} - \frac{\Delta P_{dif}}{q_{ref}}$$

$$3.19$$

Como não há difusor na configuração atual:

$$\frac{\Delta P_{\rm dif}}{q_{\rm ref}} = 0$$
3.20

E também como não há bocal de entrada no tubo de chama:

$$\frac{\Delta P_{bac}}{q_{ref}} = 0$$
 3.21

Portanto rearranjando-se a Equação 3.19, temos:

$$\frac{\Delta P_{sw}}{q_{ref}} = \frac{\Delta P_{2-3}}{q_{ref}}$$
3.22

Uma vez obtida a área do swirler é possível estimar o seu diâmetro externo (D_{ext,sw}) pela Equação 3.23 sem considerar a espessura das pás.

$$D_{sw} = \sqrt{\left[\left(\frac{4.A_{sw}}{\pi}\right) + D_{int,sw}^2\right]}$$
3.23

O diâmetro interno do *swirler* ($D_{int,sw}$) é definido pelo dimensionamento da lança do injetor de combustível e tem um valor típico estimado entre 10 a 15% de D_{ref} . O diâmetro externo do *swirler*, segundo MELCONIAN e MODAK (1985), deve estar próximo a 30% de D_{ref} .

A intensidade do escoamento na zona de recirculação pode ser quantificada pelo número de swirl (N_{sw}) que é uma grandeza adimensional que corresponde à relação física entre as componentes axiais das quantidades de movimento angular e axial do escoamento. O número de swirl foi caracterizado por BEÉR & CHIGIER (1972) e pode ser definido pela Equação 3.24.

$$S_{n} = \left\{ \frac{2}{3} \cdot \left[\frac{1 - \left(\frac{D_{int,sw}}{D_{gw}}\right)^{3}}{1 - \left(\frac{D_{int,sw}}{D_{gw}}\right)^{2}} \right] \cdot \tan \alpha_{sw} \right\}$$

$$3.24$$

Recomenda-se que *swirlers* devam trabalhar com forte intensidade ($S_n > 0,6$) pois abaixo de $S_n = 0,4$ não há geração de recirculação (BEER & CHIGIER, 1972). MUNIZ et al. (1998) sugerem que o número de *swirl* deva ser superior a 1,19 para permitir um processo de combustão mais homogêneo e intenso.

Os parâmetros de projeto para dimensionamento do swirler é resumido na Tabela 3.15.

Uma vez que as áreas do *swirler* foram calculadas para um excesso de vazão de 50%, conforme sugerido por MELCONIAN e MODAK (1985), o diâmetro do *swirler* deve ser escolhido e verificado.

A verificação é realizada com o intuito de apurar se a vazão de ar que passa plelo *swirler* é a mesma de porojeto dou se houve alguma alteração nessa vazão devido à escolha do diâmetro. Uma vez tenha ocorrido alteração no valor dessa vazão, esse novo valor deve ser admitido no projeto.

O diâmetro do swirler é mostrado na Tabela 3.16.

Parâmetro	Valor	
Dint,sw	0,018 m	
Ninj	1 injetor	
Asw	60°	
$\frac{\dot{m}_{sw}}{\dot{m}_3}$	7,0 %	
Pás finas e retas - Ksw	1,30	

TABELA 3.15 – Parâmetros de projeto do swirler

Parâmetro	Valor	
Número de pás (nv)	8 pás	
Espessura da pá (tv)	0,001 m	

TABELA 3.16- Projeto do swirler

Referência	$\Delta P_{2-3}/q_{ref}$	Asw [m ²]	Dsw [m]	Dsw/Dtc
MELCONIAN & MODAK (1985)	40	5,02E-04	0,0310	0,282
LEFEBVRE & BALLAL (2010)	37	5,22E-04	0,0315	0,286

Para fins de usinagem foi selecionado o diâmetro de 0,03 m que dá uma razão entre os diâmetros do tubo de chama e do swirler de 27%, próximo portanto ao valor típico de 30% sugerido pelos autores.

Considerando-se a área ocupada pelas pás, a área efetiva do *swirler* é definida por LEFEBVRE e BALLAL (2010) na Equação 3.25.

$$A_{sw} = \frac{\pi}{4} \left(D_{sw}^2 - D_{int,sw}^2 \right) - 0, 5. n_v. t_v. \left(D_{sw} - D_{int,sw} \right)$$
 3.25

A área efetiva projetada para o *swirler* calculada pela Equação 3.25 é de 3,98 x 10⁻⁴ e a vazão foi recalculada utilizando-se a Equação 3.17. Para uma razão $\Delta P_{3-4}/q_{ref} = 40$, a vazão passou a ser de 9,5% e para o valor de $\Delta P_{3-4}/q_{ref} = 37$ o valor recalculado para a vazão é de 9,13%.

Os número de swirler calculado é 1,356. A Figura 3.11 mostra o esquemático do *swirler* projetado,

FIGURA 3.11 - Esquemático do swirler projetado

3.3.12 Cúpula e Zona de Recirculação.

O comprimento da zona de recirculação (L_{zr}) , círculo mágico, deve estar entre os valores o do comprimento da zona primária (L_{zp}) e duas vezes o do diâmetro externo do swirler (D_{sw}) .

O ângulo da cúpula é determinado pelas Equações 3.26 a 3.29.

$$\theta_{\rm cup} = \arg\left[\frac{\Psi - \vartheta}{\chi}\right] \tag{3.26}$$

$$\psi = -\mathbf{D}_{ref} \left(\mathbf{D}_{tc} - 2 \cdot \mathbf{D}_{sw} \right)$$

$$3.27$$

$$\vartheta = (D_{te} - 4.L_{ZR}). \sqrt{(D_{te}^2 - 4.D_{te}.D_{sw} + 4.D_{sw}^2 - 8.D_{te}.L_{zr} + 16.L_{zr}^2)}$$
 3.28

$$\chi = 2.D_{tc}^2 - 4.D_{tc}.D_{sw} + 4.D_{sw}^2 - 8.D_{tc}.L_{zr} + 16.L_{zr}^2$$
3.29

E o comprimento da cúpula (L_{cup}) pela Equação 3.30.

$$L_{cup} = \frac{D_{tc} - D_{sw}}{2.\tan\theta_{cup}}$$
3.30

A Figura 3.12 mostra a geometria da zona de recirculação e da cúpula.

FIGURA 3.12 - Cúpula e zona de recirculação.

Para o diâmetro de 0,03 m os valores encontrados de θ_{cup} e L_{cup} são 76,26° e 0,0098 m. Definiu-se então que o ângulo da cúpula deve ser de 75° e o projeto da cúpula de da zona de recirculação fica sumarizado na Tabela 3.17.

TABELA 3.17 – Projeto da zona d	e recircul	ação e c	la cúpula
---------------------------------	------------	----------	-----------

Parâmetro	Valor
Lzr = 2.Dsw	0,06
θ_{cup}	75°
L _{cup}	0,010 m

3.3.13 Determinação das Temperaturas nas Zonas de Combustão.

A determinação do perfil de temperatura nas ao longo da câmara de combustão é necessária para o dimensionamento do escoamento de resfriamento do tubo de chama. O objetivo do cálculo do perfil de temperatura na câmara é determinar os pontos de maior temperatura ao longo do tubo de chama e a localização destes pontos para que sejam posicionados os orifícios de refrigeração.

O cálculo das temperaturas é feito para cada zona de combustão pela metodologia empírica sugerida por MELCONIAN e MODAK (1985). Para cada zona de combustão é determinado um perfil entre as temperaturas inicial (T_{in}) e final (T_{fin}) dessa zona do tubo de chama. A Figura 3.13 mostra o perfil de temperatura típico ao longo da câmara de combustão.

Assume-se que a temperatura aumenta linearmente desde a temperatura de entrada $(T_{in,zr})$ até a temperatura de saída $(T_{fin,zr})$. A temperatura inicial da zona de recirculação é assumida como a temperatura de entrada da câmara (T_2) . A temperatura final na zona de recirculação é determinada pela seguinte seqüência de equações:

$$\mathbf{T}_{in,zr} = \mathbf{T}_2$$
 3.31

$$\mathbf{T}_{\mathrm{fin,zr}} = \mathbf{T}_2 + \eta_{\mathrm{zr}}, \Delta \mathbf{T}_{\phi=1}$$

$$3.32$$

$$\eta_{zr} = 0.56 + 0.44 \cdot \tanh[1.5475 \cdot 10^{-3} \cdot (T_2 + 108 \cdot \ln p_2 - 1863)]$$
 3.33

Sendo:

 η_{zr} é a eficiência de combustão na zona de recirculação, e

 $\Delta T_{\Phi=1}$ é o aumento de temperatura de chama adiabática considerando-se a chama difusiva para razão de equivalência estequiométrica.

Na zona de recirculação o nível de turbulência é intenso. Portanto pode-se assumir nessa região um comportamento de um reator de mistura homogênea, onde a temperatura é a mesma em qualquer posição no volume deste reator. Assim o perfil de temperatura na zona de recirculação é constante sendo que a temperatura média na zona de recirculação ($T_{méd,zr}$) pode ser obtida pela Equação 3.34.

$$T_{méd,zr} = \frac{T_2}{3} + 2.\frac{T_{fin,zr}}{3}$$
 3.34

A temperatura de saída da zona primária $(T_{fin,zp})$ é determinada considerando-se a uma variação linear, sendo a temperatura inicial da zona primária $(T_{in,zp})$ como a temperatura de entrada na câmara (T_2) . A temperatura final da zona primária é determinada pela seguinte seqüência de equações:

$$\mathbf{T}_{in,zp} = \mathbf{T}_2$$
 3.35

$$T_{\text{fin},\text{zp}} = T_2 + \eta_{\text{zp}} \Delta T_{\phi \text{zp}}$$
3.36

$$\eta_{zp} = 0.71 + 0.29 \tan \left[1.5475 \cdot 10^{-3} \cdot (T_2 + 108 \ln p_2 - 1863) \right]$$
 3.37

Para a zona secundária o perfil de temperatura também é considerado linear, variando entre a temperatura de entrada na zona secundária (T_{in,zs}) considerando-a como a temperatura

2 28

de saída da zona primária ($T_{fin,zp}$). A seguinte seqüência de equações determina a temperatura de saída da zona secundária ($T_{fin,zs}$):

$$T_{in,zs} = T_{fin,zp}$$

$$T_{\text{fin,zs}} = T_2 + \eta_{zs} \Delta T_{\phi zs}$$
3.39

Conforme explicitado anteriormente, a função da zona secundária é gerar uma região de temperatura intermediária que permita a finalização da combustão de CO e de quaisquer UHC antes do escoamento chegar à zonda de diluição. Portanto assumiu-se que nesse ponto a eficiência de combustão seja de 100%.

A partir desse ponto o ar que entra na zona de diluição promove o abaixamento da temperatura, provocando o congelamento das reações e a zona de diluição faz seu papel de fornecer os gases à montante da turbina em uma distribuição de temperatura aceitável para o material das palhetas. A eficiência de combustão na zona de diluição é 100%.

O perfil de temperatura da zona de diluição deve ser calculado de maneira análoga ao procedimento utilizado para a zona secundária, onde:

$$T_{in,zd} = T_{fin,zs}$$
 3.40

$$T_{\text{fin,zd}} = T_3 + \eta_{zd} \cdot \Delta T_{\phi zd}$$
 3.41

Foram determinadas as temperaturas dos gases em cada zona de combustão para a condições de projeto.

As temperaturas de entrada e saída em cada zona para a situação de maior temperatura de combustão são sumarizadas na Tabela 3.18.

Ao determinar o perfil de temperatuda dos gases ao longo da câmara de combustão é possível calcular as temperaturas nas paredes do tubo de chama e analisar a necessidade da utilização de fendas de resfriamento.

Zona	Temp	48 krpm	64 krpm	77 krpm
Recirculação	T _{in} [K]	917	1010	1125
3	T _{fin} [K]	917	1010	1125
Primária (restante)	T _{in} [K]	917	1010	1125
Timaria (Testante)	T _{fin} [K]	1322	1387	1399
Secundária	T _{in} [K]	1322	1387	1399
Secundaria	T _{fin} [K]	1391	1392	1670
Diluição	T _{in} [K]	1391	1392	1670
Difuição	T _{fin} [K]	849	849	880

TABELA 3.18 - Temperatura dos gases e eficiência de combustão

A Figura 3.14 mostra o perfil de temperatura dos gases para as condições de projeto.

FIGURA 3.14 – Perfil de temperatura dos gases para as condições de operação.

3.3.14 Transferência de Calor para as Paredes.

Nos combustores modernos a temperatura dos gases liberados no processo de combustão podem ser maiores de 2100 °C. Esta temperatura é muito mais alta que o ponto de fusão dos materiais do tubo de chama e das palhetas da turbina.

Dessa forma, o projetista deve arrefecer adequadamente as superfícies metálicas expostas aos gases quentes de forma que se melhore a integridade e durabilidade estrutural desses componentes.

As tensões mecânicas sofridas pelo tubo de chama são menores que as que sujeitam outros componentes do motor. No entanto, o tubo de chama é solicitado a trabalhar em altas temperaturas e em gradientes de temperatura que podem ameaçar sua integridade estrutural.

Para assegurar um tempo de vida satisfatório para o tubo de chama, assegurar que as temperaturas e seus gradientes estejam em valores aceitáveis para os materiais é de importância fundamental.

Como esses valores não são bem definidos para as ligas de níquel ou cobalto mais comumente utilizadas, tais como Nimonic 75, Hastelloy X, e HS188, a temperatura máxima de operação na parede do tubo de chama não deve exceder 1100 K, pois as características mecânicas desses materiais decaem bastante em temperaturas superiores a essas.

A implicação prática deste limite é a necessidade de se criar meios para que a temperatura nas paredes do tubo de chama seja controlada.

A transferência de calor no tubo de chama ocorre basicamente por radiação para a parede da carcaça e convecção para o escoamento de ar que ocorre na região anular.

A maneira tradicional de se retirar calor nessas regiões é a criação de um filme de ar refrigerante entre os gases quentes e a parede interna do tubo de chama. (LEFEBVRE e BALLAL, 2010).

O sistema de arrefecimento do tubo de chama é criado por um fino filme de ar entre os gases quentes no interior do tubo de chama e sua parede interna. Este filme é criado utilizando-se o escoamento de ar frio que vem do compressor e que entra nos orifícios de refrigeração de maneira tangencial e paralela aos gases de combustão. Havendo transferência de calor entre os gases quentes e o filme de resfriamento, um novo conjunto de fendas deve ser posicionado adianta ao escoamento no tubo de chama. (NAVIA, 2010). A Figura 3.15 mostra uma fenda de resfriamento típica e seu posicionamento no tubo de chama. São posicionadas tantas fendas quentas forem necessárias.

FIGURA 3.15– Fenda de resfriamengto na parede do tubo de chama (adaptado de: LEFEBVRE e BALLAL, 2010)

A modelagem matemática da transferência de calor nas paredes do tubo de chama é definida nas seguintes referências: LEFEBVRE e BALLAL (2010), MELCONIAN e MODAK (1985), GOSSELIN et al. (1999) e NAVIA (2010).

Para a análise de transferência de calor nas paredes, o tubo de chama é tratado como um cilindro onde há escoamento interno de gases quentes e escoamento externo de ar entre a parede externa do tubo de chama e a carcaça.

As paredes do tubo de chama recebem calor na parte interna por radiação e por convecção dos gases de combustão. Na parte externa ao tubo de chama, região anular entre o tubo de chama e a carcaça, o fluxo de calor segue da parede externa do tubo de chama para o ar que flui nesse região por convecção e para a parede interna da carcaça por radiação. A Figura 3.16 mostra o processo básico de transferência de calor conforme descrito em LEFEBVRE e BALLAL (2010).

As magnitudes relativas dos componentes de radiação e de convecção dependem da geometria e das condições de operação do sistema. Sob condições de equilíbrio a temperatura do tubo de chama é tal que os fluxos de calor interno e externo são praticamente iguais em

qualquer ponto. A perda de calor por condução no sentido do fluxo de ar é pequena e normalmente negligenciada (GOSSSELIN *et al*, 1999).

Todas as propriedades são consideradas constantes ao longo da circunferência em qualquer posição axial do tubo de chama.

FIGURA 3.16– Transferência de calor na parede do tubo de chama (adaptado de: LEFEBVRE e BALLAL, 2010)

O equacionamento para uma superfície com superfície interna ΔA_{w1} e superfície externa ΔA_{w2} , em estado permanente, é determinado por LEFEBVRE e BALLAL (2010) seguindo as equações de 3.42 a 3.44.

$$(R_1 + C_1 + K) \cdot \Delta A_{w1} = (R_2 + C_2 + K) \cdot \Delta A_{w2} = K_{1-2} \cdot \Delta A_{w1}$$
 3.42

Sendo a parede do tubo de chama muito fina, a área da superfície externa pode ser considerada igual à área da superfície interna ($\Delta A_{w1} \approx \Delta A_{w2}$). Então a Equação 3.42 pode ser simplificada para:

$$(R_1 + C_1) = (R_2 + C_2) = K_{1-2}$$
3.43

Onde a transferência de calor por condução ao longo da parede do tubo de chama (K_{1-} ₂) é definida, em função da condutividade térmica do material (k_w), da espessura da parede (t_w) e das temperaturas interna e externa do tubo de chama, pela Equação 3.44.

$$K_{1-2} = \frac{k_w}{t_w} \cdot (T_{w1} - T_{w2})$$
 3.44

Radiação Interna

A maior parte de calor transferido dos gases quentes que fluem no interior do tubo de chama para a parede interna desse tubo de chama acontece na forma de radiação. Nas regiões onde o filme de refrigeração protege a parede interna do fluxo convectivo, a radiação é a única forma de transferência de calor atuante.

A quantidade total de radiação emitida pelos gases quentes é dividida por LEFEBVRE e BALLAL (2010) em:

- a) radiação não luminosa: é a radiação emitida por certos gases heteropolares, principalmente dióxido de carbono e vapor d'água, e
- b) radiação luminosa: é a radiação que depende da quantidade e tamanho de partículas (principalmente fuligem) na região de chama.

A taxa de calor transferida por radiação não luminosa do gás no interior do tubo de chama pode ser determinada pelo conhecimento do tamanho e da forma do gás e suas condições médias de pressão temperatura e composição química.

O desenvolvimento da expressão para o cálculo da transferência de calor por radiação na parte interna do tubo de chama é descrita detalhadamente por LEFEBVRE e BALLAL (2010). O fluxo de calor pela radiação dos gases pode ser obtido pela Equação 3.45

$$R_{1} = 0.5. \sigma_{SB} \cdot (1 + \epsilon_{w}) \cdot \epsilon_{g} \cdot T_{g}^{1.5} \cdot (T_{g}^{2.5} - T_{w1}^{2.5})$$
3.45

Sendo:

ε define a emissividade térmica, e σ_{SB} é a constante de Stefan-Boltzmann (5,67.10⁻⁸ W/m².K⁴)

A Equação 3.45 também é utilizada por MELCONIAN e MODAK (1985), GOSSELIN *et al.* e WILBERG (2012).

A emissividade térmica da parede (ε_w) depende do material do tubo de chama e a emissividade térmica dos gases (ε_g) é obtida pela Equação 3.46 (REEVES, 1956)

$$\varepsilon_g = 1 - \exp\left[-0.290. p_3. (f_{co}.0.9 D_{ft})^{0.5} T_g^{-1.5}\right]$$
 3.46

Quando a câmara é alimentada por um hidrocarboneto, há o surgimento de partículas de fuligem que têm um papel importante na natureza da radiação da chama.

Algumas dessas partículas quentes e luminosas entram no espectro visível gerando a chama conhecida como luminosa. Com o aumento da pressão, a radiação luminosa aumenta sua intensidade e a radiação gerada pelos vapores de água e dióxido de carbono se tornam menos importantes.

A influência da luminosidade dos gases na emissividade radiativa foi considerada por LEFEBVRE e HERBERT (1960) com a inclusão do fator de luminosidade L_u na Equação 3.46

$$\varepsilon_g = 1 - \exp[-0.290 L_u p_3 (f_{co}, 0.9 l_b)^{0.5} T_g^{-1.5}]$$
 3.47

MELCONIAN e MODAK (1985) definem a emissividade do gás em valores muito próximos aos de LEFEBVRE e HERBERT (1960).

$$\varepsilon_g = 1 - \exp\left[-0.286.L_u p_3.(f_{co}.0.9l_b)^{0.5}.T_g^{-1.5}\right]$$
3.48

Sendo l_b o comprimento característico do gás determinado por REEVES (1956) como:

$$l_b = 3,4. \frac{\text{volume}}{\text{superficie}}$$
 3.49

E o fator de luminosidade L_u é definido por KRETSCHMER e ODGERS (1978) em relação à razão carbono/hidrogênio do combustível em massa como:

$$L_{u} = 0,0691.(C/_{H} - 1,82)^{2,72}$$
 3.50

Para o cálculo da emissividade do gás foi utilizada a Equação 3.48.

Convecção Interna

Dos quatro processos de transferência de calor que determinam a temperatura do tubo de chama, a convecção interna é a mais difícil de se estimar com precisão.

Na zona primária os gases envolvidos no processo de troca de calor estão em altas temperaturas, sofrendo alterações físicas e químicas muito rapidamente.

Uma dificuldade adicional é encontrada devido a fortes gradientes de temperatura, velocidade e composição na zona primária.

As incertezas sobre a trajetória do escoamento, sobre o desenvolvimento de camadalimite e a temperatura efetiva do gás torna a escolha de um modelo realístico praticamente arbitrária. Na ausência de dados exatos, LEFEBVRE e BALLAL (2010) sugerem que é razoável assumir que a parte interna do tubo de chama se comporte como um tubo reto e desenvolve a modelagem da transferência de calor chegando a Equação 3.51.

$$C_{1} = 0.020 \cdot \frac{k_{g}}{D_{ft}^{0.2}} \cdot \left(\frac{\dot{m}_{g}}{A_{tc} \cdot \mu_{g}}\right)^{0.8} \cdot (T_{g} - T_{w1})$$
3.51

Na zona primária, onde está contida a zona de recirculação, a analogia com um tubo reto somente é válida nas regiões adjacentes às paredes do tubo de chama. A relação \dot{m}_g/A_{tc} na seção pode ser obtida pela somatória das componentes do escoamento dos gases.

Devido aos efeitos causados pela presença do swirler e pelo fato da temperatura média dos gases ser menor na região da parede a constante 0,020 da Equação 3.51 é reduzida para 0,017.

$$C_{1,zp} = 0.017. \frac{k_g}{D_{ft}^{0,2}} \cdot \left(\frac{\dot{m}_g}{A_{te}, \mu_g}\right)^{0,8} \cdot (T_g - T_{w1})$$
3.52

MELCONIAN e MODAK (1985), GOSSELIN *et al.* (1999) rearranjaram a Equação 3.52 gerando a Equação 3.53.

$$C_{1} = 0.017 \cdot \frac{k_{g}}{\mu_{g}^{0.8}} \cdot \left(\frac{\dot{m}_{g}}{A_{to}}\right)^{0.8} D_{hid}^{-0.2} \cdot (T_{g} - T_{w1})$$
3.53

Onde D_{hid} é o diâmetro hidráulico do tubo de chama que é numericamente igual ao diâmetro do tubo de chama em uma câmara tubular. A Equação 3.53 fui utilizada para calcular o fluxo de calor por convecção interna na zona de recirculação e zona primária. Para as outras zonas de combustão utilizou-se a Equação 3.51. Onde a viscosidade dinâmica dos gases (μ_g) é dada pela Equação 3.54

$$\mu_{g} = (0,03863 + 0,00749T_{g} - 5,8564.10^{-6}.T_{g}^{2} + 2,7769.10^{-9}T_{g}^{3} - 4,600774.10^{-13}.T_{g}^{4}).10^{-5}$$
3.54

E a condutividade térmica do ar nessa região é definida pela Equação 3.55

$$k_{g} = 5,92657.10^{-4} + 9,80957.10^{-5}.T_{g} - 4,89398.10^{-8}.T_{g}^{2} + 1,5011410.10^{-11}.T_{g}^{3} 3.55$$

Radiação Externa

A quantidade de calor transferido por radiação entre a superfície externa do tubo de chama e a superfície interna da carcaça (R_2) pode ser determinada aproximadamente se considerarmos as superfícies como corpos cinzentos de emissividade ε_{w2} e ε_{car} e assumindo que T_{w2} e T_2 sejam aproximadamente uniformes na direção axial. A taxa líquida de transferência de calor do tubo de chama é dada pela Equação 3.56

$$R_{2}A_{2} = \frac{\sigma_{SB}(T_{w2}^{4} - T_{carc}^{4})}{\frac{(1 - \varepsilon_{w})}{\varepsilon_{w2}A_{w2}} + \frac{1}{A_{w2}F_{wc}} + \frac{1 - \varepsilon_{carc}}{\varepsilon_{carc}A_{carc}}}$$

$$3.56$$

Sendo:

Aw2 é a superfície externa do tubo de chama,

Acarc é a superfície interna da carcaça

 F_{wc} é o fator de forma geométrico entre o tubo de chama e a carcaça.

De acordo com LEFEBVRE e HERBERT (1960), a quantidade de calor transferido do tubo de chama para a carcaça por radiação é praticamente a mesma transferida por convecção, uma aproximação entre a temperatura da parede da carcaça e a temperatura de entrada do ar de resfriamento é suficiente para que o valor da incógnita T_{carc} seja determinada. Portanto assume-se que $T_{carc} = T_2$.

Como a área entre a carcaça e o tubo de chama pode ser considerada como uma longa seção anular, o fator de forma geométrico pode ser considerado como a unidade ($F_{wc} = 1$). Então a Equação 3.56 pode ser reduzida à Equação 3.57.

$$R_2 = \sigma_{SB} \frac{\epsilon_{w2} \epsilon_{carc}}{\epsilon_{carc} + \epsilon_{w2} (1 - \epsilon_{carc}) (A_{w2}/A_{carc})} (T_{w2}^4 - T_2^4)$$
3.57

Para uma câmara tubular a razão A_{w2}/A_{carc} é igual à razão entre o diâmetro do tubo de chama é o diâmetro da carcaça. Para sistemas tuboanulares, onde o diâmetro anular varia, pode-se utilizar um valor médio de 0,8 e para câmaras anulares, essa razão é ligeiramente maior que 1 para o diâmetro interno e ligeiramente maior que esse valor que o diâmetro externo.

Valores mais acurados de emissividade de materiais podem ser encontrados em HOTTEL (1954), porém as equações 3.58 e 3.59 são indicadas por LEFEBVRE e BALLAL (2010) para fins práticos tanto para carcaças de alumínio quanto para carcaças de aço respectivamente.

$$R_2 = 0.4\sigma_{SB}(T_{w2}^4 - T_2^4)$$
3.58

$$R_2 = 0.46(T_{w2}^4 - T_2^4)$$
3.59

Tanto a carcaça quanto o tubo de chama foram confeccionados em aço, portanto foi utilizada a Equação 3.59.

Convecção Externa

A determinação da transferência de calor por convecção na área anular é semelhante àquela feita para o processo de convecção interna. Porém algumas considerações devem ser feitas. O número de Reynolds passa a ter como comprimento característico o diâmetro médio anular que deve ser determinado pela Equação 3.60.

$$D_{an} = 4. \frac{\text{área da seção transversal}}{\text{perímetro}}$$
3.60

Sendo que para câmaras tubulares esse valor corresponde a:

$$\mathbf{D}_{an} = \mathbf{D}_{carc} - \mathbf{D}_{tc}$$
 3.61

E para câmaras anulares,

$$\mathbf{D}_{\mathrm{an}} = 2.\left(\mathbf{D}_{\mathrm{carc}} - \mathbf{D}_{\mathrm{tc}}\right) \tag{3.62}$$

Considerando-se que o escoamento na seção anular é agitado o suficiente para que uma transferência turbulenta completamente desenvolvida ocorra, a Equação 3.63 pode ser utilizada.

$$C_{2} = 0,020 \cdot \frac{k_{a}}{D_{an}^{0,2}} \cdot \left(\frac{\dot{m}_{an}}{A_{an} \cdot \mu_{a}}\right)^{0,8} \cdot (T_{w2} - T_{2})$$
3.63

Onde os valores de μ_a e k_a são obtidos substituindo T_g por T_2 nas equações 3.54 e 3.55 respectivamente. Então:

$$\mu_{a} = \begin{pmatrix} 0,03863 + 0,00749T_{2} - 5,8564.10^{-6}.T_{2}^{2} \\ +2,7769.10^{-9}T_{2}^{3} - 4,600774.10^{-13}.T_{2}^{4} \end{pmatrix} \cdot 10^{-5}$$
3.64

$$k_a = 5,92657.10^{-4} + 9,80957.10^{-5}$$
. $T_2 - 4,89398.10^{-8}$. $T_2^2 + 3.65$

+1,5011410.10⁻¹¹.T₂³

As temperaturas na parede do tubo de chama obtidas por esse método são fundamentais para o projeto geométrico e para a distribuição do escoamento de ar da câmara. Porém não considerados nesse cálculo as posições das fendas de refrigeração.

Embora os cálculos desconsiderem a presença de arrefecimento suplementar, o resultado não apresenta necessariamente a máxima temperatura possível na parede. Os cálculos são feitos considerando-se que o escoamento é uniforme na região anular da câmara e há a possibilidade do aparecimento de temperaturas maiores em regiões onde a velocidade seja menor que a velocidade média considerada.

Vários pontos quentes (*hot spots*) podem aparecer pela ação combinada de baixa velocidade na parede externa do tubo de chama e uma descontinuidade do escoamento de refrigeração no lado interno deste tubo de chama.

Mesmo assim os valores médios calculados, baseados em completa uniformidade do escoamento servem como uma medida comparativa para a análise da quantidade de filme de refrigeração necessária para o projeto do tubo de chama (LEFEBVRE e BALLAL, 2010).

Como as condições de entrada (P_2 e T_2) na câmara são baixas, foi uma análisado o comportamento da temperatura ao longo do tubo de chama, desconsiderando-se as fendas de resfriamento, de maneira a verificar a necessidade da presença desses dispositivos.

GOSSELIN *et. Al* (1999), afirmam que as temperaturas que a condução de calor entre a região interna e a região anular pode ser desconsiderada se a espessura da parede for muito pequena. A espessura foi determinada em 2.10^{-3} m, portanto para a determinação das temperaturas considerou-se $T_{w1} = T_{w2}$.

Considerou-se que o fator de luminosidade passa a ter influência na radiação da chama quando seu valor é superior à unidade. O fator de luminosidade apresentado na Equação 3.50 tem valores menores que 1 para hidrocarbonetos até o propano (inclusive). Utilizando-se a Equação 3.66 proposta por LEFEBVRE (1985), o fator de luminosidade só tem sua influência percebida com a utilização de propano e hidrocarbonetos mais pesados

Devido à sua alta volatilidade, a boa atomização e maior densidade de *spray* espera-se que a queima da chama de etanol ocorra em grupo com pouca geração de fuligem e com baixa intensidade de radiação (PEREZ, 2007), portanto a foi considerado chama produzida pelo

etanol não é luminosa e adotou-se $L_u = 1$. A Figura 3.17 mostra o comportamento da temperatura no tubo de chama.

$$L_u = 336/\%H_2$$
 3.66

As temperaturas calculadas para a situação mais crítica são mostradas na Tabela 3.19 e na Figura 3.15.

Zona	T _{w,in} [K]	T _{w,fin} [K]
Recirculação	517	517
Primária (restante)	517	657
Secundária	657	675
Diluição	675	715

TABELA 3.19 – Temperatura na parede do tubo de chama

FIGURA 3.17 - Temperatura na parede do tubo de chama para a condição mais crítica

GOSSELIN *et. al* (1999), prevêem uma incerteza de \pm 100 K para a temperatura de parede na zona primária para condições de baixa eficiência e de \pm 30 K para as demais zonas de combustão.

O maior valor de temperatura, encontrado no final da zona de diluição, foi de 715 K. Esta temperatura está muito abaixo do valor típico de 1100 K considerado para o material, portanto assume-se que este tubo de chama não necessita de fendas de refrigeração.

Considerando-se as incertezas definidas as temperaturas na parede do tubo de chama estão muito abaixo do limite crítico de 1100 K. O material selecionado foi o aço inox AISI 310 comercial que suporta temperaturas até 1100 K, portanto mesmo que a resistência a temperatura seja menor para esse material ainda não se apresentou necessidade da utilização de resfriamento adicional para essa configuração.

Decidiu-se então que todo o ar reservado para refrigeração seja inserindo no tubo de chama por uma fileira de orifícios posicionada no final da zona de diluição.

3.3.15 Dimensionamento dos Orifícios de Admissão

A determinação da dimensão dos orifícios de admissão é feita por um processo interativo após a determinação da vazão de ar que entra em cada zona.

O processo é interativo devido ao fato do coeficiente de descarga do orifício $(C_{d,h})$ ser desconhecido. A sequência de cálculos descrita por LEFEBVRE e BALLAL (2010) é apresentada abaixo:

 Cacular a razão de sangria (β_h) que é definida como entre a vazão de ar total que entra no orifício e a vazão de ar que passa pela região anular (Equação 3.67)

$$\beta_{\rm h} = \frac{m_{\rm h,t}}{\dot{m}_{\rm an}}$$
3.67

- 2. Estimar um valor inicial para o coeficiente de descarga.
- Determinar a área total do orifício pela Equação 3.68, assumindo a perda de pressão no orifício (ΔPft / P₂) como 0,6.

$$\frac{\Delta P_{ft}}{P_2} = \frac{143,5.\left(\dot{m}_{h,t}\right)^2.T_2}{P_2^2 C_{d,h}^2 A_{h,t}}$$
3.68

Calcular a razão de área (α_h) que é a razão entre a área total calculada é a área anular (Equação 3.69) e sua relação com a razão de sangria (μ_h) pela Equação 3.70.

$$\alpha_{\rm h} = \frac{A_{\rm h}}{A_{\rm an}}$$
 3.69

$$\mu_{\mathbf{h}} = \frac{\beta_{\mathbf{h}}}{\alpha_{\mathbf{h}}}$$
 3.70

5. Calcular o fator de perda de pressão (K) usando a Equação 3.71 onde δ é o fator de perda de momento (δ = 0.8 para orifícios planos e δ = 0.6 para orifícios convexos).

$$K = 1 = \delta \left\{ 2. \,\mu^2 + \left[4. \,\mu^4 + \left(\frac{\mu^2}{\delta^2} \right) . \, (4.\beta - \beta^2) \right]^{0.5} \right\}$$
3.71

6. Inserir o valor do coeficiente de perda de pressão na Equação 3.72 para obter o valor de $C_{d.h}$.

$$C_{d,h} = \frac{(K-1)}{\delta[4K^2 - K.(2-\beta)^2]^{0.5}}$$
3.72

A área total dos orifícios é então definida quando os valores de coeficiente de descarga convergirem.

Então devem ser determinados a quantidade de orifícios e o número de colunas. Os valores calculados são mostrados na Tabela 3.20.

Para facilitar a usinagem do tubo de chama os valores dos diâmetros foram arredondados e a posição de cada coluna dos orifícios foi definida. Os valores definidos são mostrados na Tabela 3.21.

A posição dos orifícios da zona primária deve ser no final da zona de recirculação de maneira que o ar penetre o tubo de chama tangencialmente à recirculação dos gases.

Os orifícios das zonas secumdária e de diluição devem ser pocicionados na distância calculada para a entrada destas zonas. Em caso de necessidade podem ser utilizadas múltiplas fileiras de orifícios.

Zona	área total [mm²]	número	diâmetro [mm]
Primária	606	12	8,015
Secundária	418	7	8,724
Diluição	978	11	10,641
Refrigeração	375	28	3,946

TABELA 3.20 – Área, quantidade e diâmetro calculados.

TABELA 3.21 – Quantidade, diâmetro e posição das colunas.

Zona	número	diâmetro [m]	x [m]
Primária	12	8	0,0640
Secundária	7	9	0,0865
Diluição	11	11	0,1305
Refrigeração	28	4	0,1820

Uma vez definidos os orifícios de admissão de ar é necessário fazer a verificação das porcentagens de vazão de ar nas zonas. Esses valores são mostrados na Tabela 3.22.

Zona	primária	secundária	diluição	refrigeração
A _h [m ²]	5,03 x 10 ⁻⁵	6,36 x 10 ⁻⁵	9,50 x 10-5	1,25 x 10 ⁻⁵
$A_{h,t} \left[m^2 \right]$	6,03 x 10 ⁻⁴	4,45 x 10 ⁻⁴	1,05 x 10 ⁻³	3,52 x 10 ⁻⁴
$A_{h,t} / A_{t,h} [\%]$	24,66	18,21	42,75	14,38
m _{h.t} [%]	31,66*	18,21	42,75	14,38

TABELA 3.22 – Quantidade, diâmetro e posição das colunas.

* a vazão na zona primária já considera a vazão de ar que entra pelo swirler

O ângulo de penetração do jato foi então definido pela Equação 3.73, cujos valores são mostrados na Tabela 3.23.

$$\sin\psi_{jato} = \frac{1}{2.Cd_h.\delta} \cdot \frac{K-1}{K}$$
3.73

TABELA	3.23 -	Ângulo	de	penetração	do	jato
		0		1		J

Parâmetro	Zona Primária	Zona	Zona de
Ângulo de penetração [°]	76,28	79,37	88,59

3.3.16 Projeto Final do Tubo de Chama

Considerando-se que o tubo de chama atende aos limites de inflamabilidade e que atende às limitações de temperatura na parede e perda de carga da câmara quando operado com etanol, o projeto foi finalizado e o dispositivo foi confeccionado. A Figura 3.18 mostra o projeto com as dimensões do tubo de chama, a Figura 3.19 mostra o tubo de chama projetado e a Figura 3.20 mostra o *liner* confeccionado.

FIGURA 3.18 – Dimensões do tubo de chama

FIGURA 3.19 – Tubo de chama projetado

FIGURA 3.20 – Tubo de chama

3.4 Projeto do injetor para o etanol

ALVES e LACAVA (2009) apresentam uma metodologia para o projeto de injetores do tipo *pressure-swirl* baseada no trabalho desenvolvido por ALVES (2007). Essa metodologia embasada em KESSAEV (2006) e BAZAROV (2004) é descrita.

Para o cálculo dos principais parâmetros geométricos desse tipo de injetor, considerase primeiramente o combustível como um fluido ideal, desconsiderando os efeitos de viscosidade e as perdas geradas por esses efeitos. Então os resultados obtidos são corrigidos de forma a considerar esses efeitos que foram negligenciados na fase anterior.

As perdas nos injetores *pressure-swirl* ocorrem devido ao atrito nos canais tangenciais de entrada do combustível e também em razão da influência da viscosidade desse combustível no escoamento em vórtice no interior da câmara do injetor.

As condições de projeto que devem ser determinadas para o início do projeto são: vazão mássica do combustível, massa específica, tensão superficial, viscosidade dinâmica, viscosidade cinemática e a diferença de pressão entre a entrada e a saída do injetor. As características do combustível são descritas na Tabela 3.24.

O injetor foi projetado para operar na vazão máxima de operação (11,03 g/s).

Propriedades	Valor	Unidade
Massa específica – ρ_{comb}	790	kg/m³
Viscosidade cinemática – v_{comb}	1,52x10 ⁻⁶	m²/s
Viscosidade dinâmica – µ _{comb}	0,0012	kg/m.s
Tensão superficial – σ_{comb}	0,02275	kg/s²

TABELA 3.24 – Propriedades do EAC

A pressão na câmara de combustão é calculada pela Equação 3.74 e o diferencial de pressão no injetor pela Equação 3.75.

$$P_{cc} = P_{2} \cdot \left(1 - \frac{\Delta P_{2-3}}{P_2}\right)$$
 3.74

$$\Delta P_{inj} = P_{inj} - P_{cc} \qquad 3.75$$

A massa específica dos gases no interior da câmara de combustão é definida pela lei dos gases perfeitos na Equação 3.76.

$$\rho_{gases} = \frac{P_{cc}}{R_{gases} \cdot T_2}$$
3.76

A constante dos gases é $R_{gases} = 287 \text{ J/kg.K}$

Portanto as condições de injeção na câmara são sumarizadas na Tabela 3.25

A Figura 3.21 mostra os principais parâmetros geométricos necessários para o dimensionamento do atomizador.

Propriedades	Valor	Unidade
Pressão de injeção	4,60 x10 ⁵	Pa
Pressão na câmara de combustão	3,10 x10 ⁵	Ра
Perda de pressão no injetor	1,5x10 ⁵	Pa
Massa específica dos gases	2,395	Kg/m³

TABELA 3.25 – Condições de injeção na câmara

FIGURA 3.21 - Principais dimensões do injetor pressure-swirl (ALVES e LACAVA, 2009)

Uma vez determinadas as condições de vazão mássica, perda de pressão e massa específica dos gases no combustor para as condições de projeto, o desenvolvimento segue um fluxograma.

O método se inicia pela escolha dos parâmetros dimensionais preliminares do injetor

O fluxograma de projeto é mostrado na Figura 3.22.

O primeiro parâmetro a ser calculado é o raio do centro do atomizador e a linha de centro do canal tangencial (R_{ct}) calculado pela Equação 3.77.

$$R_{ct} = r_{cv} - r_{ct} \tag{3.77}$$

A partir desse dado podemos definir o parâmetro geométrico ideal do injetor (G_{id}) que relaciona os raios geométricos do atomizador e o número de canais tangenciais conforme mostra a Equação 3.78.

$$G_{id} = \frac{R_{ct} \cdot r_{si}}{n_{ct} \cdot r_{ct}^2}$$

$$3.78$$

A área livre é a soma da área molhada, onde ocorre o escoamento do líquido, com a área seca, onde ocorre o escoamento dos gases, do injetor. O parâmetro geométrico inicial relaciona-se com o coeficiente de área livre ideal (ζ_{id}) como mostra a Equação 3.79.

$$G_{id} = \frac{(1 - \zeta_{id}) \cdot \sqrt{2}}{\zeta_{id} \cdot \sqrt{\zeta_{id}}}$$
3.79

Então o coeficiente de descarga ideal do injetor pode ser calculado pela Equação 3.80.

$$C_{d,id} = \zeta_{id} \sqrt{\frac{\zeta_{id}}{2 - \zeta_{id}}}.$$
3.80

FIGURA 3.22 - Fluxograma do projeto do injetor pressure-swirl (ALVES e LACAVA, 2009)

A vazão mássica ideal de combustível pode ser determinada pela Equação 3.81.

$$\dot{\mathbf{m}}_{comb,id} = \mathbf{C}_{d,id} \cdot \mathbf{A}_{s} \cdot \sqrt{2 \cdot \rho_{comb} \cdot \Delta P_{inj}}$$

$$3.81$$

Uma vez encontrada a vazão mássica ideal ($\mathbf{m}_{comb,id} = 11,03 \text{ x}10^{-3} \text{ kg/s}$) iniciam-se as considerações sobre os efeitos de viscosidade e perdas no atomizador com a finalidade de se obter a vazão mássica real de combustível.

Com a vazão mássica ideal é possível calcular a velocidade de escoamento do fluido no interior de um canal tangencial de entrada de combustível (V_{ct}) pela Equação 3.82.

$$V_{ct} = \frac{\dot{m}_{comb,id}}{n_{ct} \cdot \pi \cdot r_{ct}^2 \cdot \rho_{comb}}$$
3.82

Segundo KESSAEV (2006) o escoamento em um canal tangencial deve ter um número de Reynolds (Re_{ct}) superior a 4000. O número de Reynolds no canal tangencial é determinado pela Equação 3.83.

$$Re_{ct} = \frac{2.V_{ct} \cdot r_{ct}}{v_{comb}}$$

$$3.83$$

Com o valor do coeficiente de resistência de superfície de um canal tangencial (λ_{ct}) pode ser determinado pela Equação 3.84 (FOX, 1998).

$$\lambda_{et} = 0,3164. Re^{-0,25}$$
 3.84

O coeficiente de resistência superficial é possível calcular o parâmetro geométrico equivalente (G_{eq}) do injetor pela Equação 3.85. O parâmetro geométrico equivalente é uma correção do parâmetro geométrico ideal, onde leva-se em conta a resistência superficial dos canais tangenciais que é responsável por grande parte das perdas no atomizador.

$$G_{eq} = \frac{R_{ct} \cdot r_s}{n_{ct} \cdot r_{ct}^2 + \frac{\lambda}{2} \cdot R_{ct} \cdot (R_{ct} - r_s)}$$
3.85

Uma vez determinado G_{eq} deve-se determinar o coeficiente de área livre equivalente (ζ_{eq}) resolvendo-se a Equação 3.86.

$$\mathbf{G}_{eq} = \frac{(1 - \zeta_{eq}).\sqrt{2}}{\zeta_{eq}.\sqrt{\zeta_{eq}}}$$
3.86

O coeficiente de perda de movimento angular (K_m) representa as perdas ocasionadas pelos efeitos de viscosidade no interior do injetor. Através desse coeficiente obtêm-se a influência das perdas devido a viscosidade na vazão mássica do combustível no injetor. O coeficiente K_m é a relação entre o parâmetro geométrico equivalente e o parâmetro geométrico ideal como se mostra na Equação 3.87.

$$\mathbf{K}_{m} = \frac{\mathbf{G}_{eq}}{\mathbf{G}_{id}}$$
3.87

As perdas hidráulicas no interior de cada canal tangencial são determinadas pelo fator ε que leva em conta as perdas hidráulicas em relação à geometria (ε_c) que pode ser determinado a partir da forma de entrada do canal tangencial selecionado a partir da Figura 3.23, Figura 3.24 ou Figura 3.25, do coeficiente de resistência superficial e a relação entre o comprimento do canal tangencial e o raio desse canal.

A relação L_{ct} e 2.r_{ct} deve estar entre 2 e 3.

O fator ε é determinado pela Equação 3.88.

FIGURA 3.23– coeficiente de perda ϵ_c em função da geometria de entrada arredondada. (ALVES e LACAVA, 2009)

FIGURA 3.24– coeficiente de perda ϵ_c em função da geometria de entrada cônica. (ALVES e

LACAVA, 2009)

FIGURA 3.25– coeficiente de perda ε_c em função da geometria de entrada em canto vivo. (ALVES e LACAVA, 2009)

$$\varepsilon = \varepsilon_c + \lambda \cdot \frac{L_{ct}}{2.r_{ct}}$$
3.88

O coeficiente de redução de área (C_a) é então calculado pela Equação 3.89.

$$\mathbf{C}_{\alpha} = \frac{R_{\sigma t}}{r_{si}}$$
3.89

E finalmente a vazão mássica real de combustível é determinada pela Equação 3.90.

$$\dot{m}_{comb,r} = \frac{\pi \cdot r_{s} \sqrt{2 \cdot \rho_{comb} \cdot \Delta P_{inj}}}{\sqrt{\frac{1}{\zeta_{eq}^{2}} + \frac{G_{eq}^{2} \cdot K_{m}^{2}}{1 - \zeta_{eq}} + (\varepsilon \cdot n_{ct}) \cdot \frac{G_{eq}^{2}}{C_{a}^{2}}}}$$
3.90

O valor da vazão real deve convergir para o valor da vazão mássica de projeto. Na eventualidade de não haver convergência deverão ser determinados novos parâmetros dimensionais no início do projeto e/ou redefinida a geometria de entrada do canal tangencial.

Após a convergência entre as vazões mássicas de projeto e real calcula-se o coeficiente de descarga equivalente ($C_{d,eq}$) pela Equação 3.91 para que o coeficiente de descarga total ($C_{d,tys}$) possa ser determinado pela Equação 3.92.

$$C_{d,eq} = \zeta_{eq} \sqrt{\frac{\zeta_{eq}}{2 - \zeta_{eq}}}$$
3.91

$$C_{d,tps} = \frac{C_{d,eq}}{\sqrt{1 + C_{d,eq}^{2} \cdot \varepsilon \cdot \frac{G_{eq}^{2}}{C_{a}^{2}}}}$$

$$3.92$$
$$\sin \alpha_{c} = \frac{2.C_{d,tps}A_{eq}K}{1 + \sqrt{1 - C_{d,eq}} \sqrt{1 + C_{d,eq}^{2} \cdot \varepsilon \cdot \frac{A_{eq}^{2}}{C^{2}}}$$

$$3.93$$

As dimensões finais do injetor mostradas na Figura 3.26 são resumidas na Tabela 3.26.

FIGURA 3.26 - Dimensões do injetor de etanol

Símbolo	Dimensão	Valor	Unidade
r _{ct}	Raio do canal tangencial	0,35.10 ⁻³	m
n _{ct}	Número de canais tangenciais	4	-
r _{cv}	Raio da câmara de vórtice	2,5.10-3	m
r _{si}	Raio da saída do injetor	1,5.10-3	m

TABELA 3.26 - Parâmetros dimensionais para o projeto preliminar do atomizador

A velocidade do líquido na saída do injetor (V_{si}) pode ser calculada conforme a Equação 3.94 (COUTO *et al.*, 2009) e a espessura do filme líquido que emerge do orifício de descarga do atomizador pela Equação 3.95.

$$V_{si} = \sqrt{\frac{2.\,\Delta P_{inj}.\,C_{d,sq}}{\rho_{comb}}}$$

$$3.94$$

$$h_{fl} = \frac{D_s - \left[D_s^2 - \left(\frac{4. \dot{m}_{comb,r}}{\pi. \rho_{comb}. V_s} \right) \right]^{\frac{1}{2}}}{2}$$
3.95

O diâmetro de ligamento é calculado pela Equação 3.96 e o diâmetro médio de Sauter é então determinado de acordo com o mecanismo de Rayleigh pela Equação 3.97 (COUTO *et al.*, 2009)

As principais características do spray são mostradas na Tabela 3.27.

Propriedades	Valor	Unidade
Vazão real de combustível	11,25	g/s
Ângulo do <i>spray</i>	100,50	0
Diâmetro Médio de Sauter	96,43	μm

TABELA	3 27 -	Características	do	sprav
INDLLA	5.41 -	Caracteristicas	uo	spruy

3.4.1 Montagem do Injetor

Para a montagem do atomizador optou-se pela montagem de uma lança para alimentação do injetor de etanol concêntrica e interna ao injetor de gás utilizado como chama piloto.

Os orifícios de saída do queimador de gás natural são dispostos radialmente no injetor sendo que a face frontal deste injetor possui um orifício concêntrico ao orifício de saída do injetor *pressure-swirl*. Essa montagem é mostrada na Figura 3.27.

FIGURA 3.27– Montagem dos injetores

A lança do injetor de etanol e a do injetor de gás natural são mostradas na Figura 3.28.

FIGURA 3.28- Lanças dos injetores de gás e etanol

A montagem final do injetor é mostrada na Figura 3.29.

FIGURA 3.29 - Injetor híbrido montado

A montagem do injetor na carcaça é mostrada na Figura 3.30.

FIGURA 3.30 – Montagem do injetor híbrido de GN e EHC

4 Bancadas e Ensaios

Neste capítulo são descritas as bancadas para diagnósticos dos parâmetros termodinâmicos e emissões de poluentes, bem como das características de *spray* do combustível líquido. São descritos também os procedimentos de ensaio estabelecidos.

4.1 Bancadas

Nesta seção são descritas as bancadas para os ensaios de desempenho termodinâmico, emissões de poluentes e desempenho do injetor centrífugo.

4.1.1 Bancada para Ensaio da Câmara de Combustão operando com Etanol

Para a aquisição dos parâmetros termodinâmicos foi montada a microturbina conforme se descreve a seguir.

A microturbina foi desenvolvida a partir de uma montagem entre um compressor modelo 110/55 AQM que equipa o turbocompressor automotivo Swchitzer S500 e uma turbina 87PJ1 que equipa um turbocompressor automotivo Swichtzer S400. O compressor e a turbina são centrífugos e de estágio simples.

Entre a saída do compressor e a entrada da turbina foi instalada a câmara de combustão tubular de escoamento reverso apresentada no capítulo anterior.

Um sistema de injeção de gás natural em linha faz a alimentação do combustível gasoso utilizado como chama piloto na partida do gerador de gases.

Para a alimentação do combustível líquido foi desenvolvido um sistema por pressurização que utiliza N_2 a alta pressão para forçar a passagem do etanol pelo injetor. Um desenho conceitual do combustor é apresentado na Figura 4.1.

A bancada é instrumentada com três termopares e dois pressostatos para aquisição de temperatura e pressão estática. A posição, faixa de operação e a incerteza dos pressostatos é mostrada na Tabela 4.1 e dos termopares na Tabela 4.2.

Os termopares foram conectados ao módulo analógico Rockwell de onde os sinais são enviados ao CLP Micrologix 1100.

A rotação é medida por um tacômetro ótico Instrutherm TDR 100 que possui escala de 5 a 99.999 rpm com precisão de $1\% \pm 1$ rpm. O foto-tacômetro conta com mira *laser* e

conexão para programa de aquisição. A mira *laser* direciona o sensor para uma fita reflexiva posicionada na ponta do eixo do compressor.

FIGURA 4.1 - Câmara de combustão

TABELA 4.1 – Pontos de aquisição de pressão

Ponto	Posição	Faixa de Pressão	Incerteza
P02	Saída do compressor	0 - 06 bar	1%
P04	Saída da câmara de combustão	0 - 06 bar	1%

TABELA 4.2 - Pontos de aquisição de temperatura

Ponto	Posição	Tipo	Temperatura	Incerteza
T02	Saída do compressor	Т	0 a 350°C	±1°C ou 0,75%
T03	Saída da câmara de combustão	K	0 a 1250°C	±2,2°C ou ±0,75%
T04	Saída da turbina	K	0 a 1250°C	±2,2°C ou ±0,75%

A vazão de EHC é medida por meio de um rotâmetro da marca Omel, série 4T calibrado de fábrica para uma vazão de 0 a 14 g/s para um liquido com massa específica 850 kg/m³. Para a obtenção da vazão mássica real, o rotâmetro foi calibrado com o combustível utilizado nos ensaios.

O Controlador Lógico Programável (CLP), modelo Allen-Bradley 110, controla os sistemas de partida, ignição, e bomba de óleo. A interface homem-máquina (IHM) é feita por um sistema supervisório desenvolvido no programa RSView32.

O gás natural provém de uma instalação externa ao laboratório que alimenta uma válvula redutora de pressão. A vazão do gás é controlada manualmente por meio de uma válvula de agulha *swagelok* modelo SS-18RF8 com perda de carga de 101325 Pa e coeficiente de vazão Cv = 0,428.

A vazão de EHC é controlada por meio de uma válvula de agulha comum e o circuito de combustível líquido é isolado por uma por uma válvula de esfera de ¹/2" posicionada à montante do rotâmetro e à jusante da válvula de controle de vazão. A ignição é realizada por uma vela conectada a uma bobina e é controlada pelo CLP. Deve ser acionada antes da liberação do gás combustível para evitar ignição indesejada.

A partida do sistema é realizada por um motor de arranque, cuja aceleração é controlada pelo sistema supervisório. Uma vez atingida a rotação de auto-sustentação o motor deve ser desacoplado do eixo da microturbina. O descoplamento é meito de maneira automática.

O acoplamento do motor de arranque é acionado por uma solenóide. Quando acionado o campo magnético da bobina acopla o motor de arranque ao eixo do compressor. Ao atingir auto-sustentação a alimentação da bobina é cortada e o torque do eixo do compressor faz o desacoplamento automaticamente. A Figura 4.2 mostra o esquemático e a bancada montada.

FIGURA 4.2 – Esquemático da bancada e a bancada montada

4.1.2 Concentração dos Produtos de Combustão

Para a medida da concentração dos componentes presentes nos gases de combustão foi utilizado um *rack* com três módulos de analisadores cujas principais características são resumidas na Tabela 4.3 e o *rack* é mostrado na Figura 4.3.

Modelo	Componente	Princípio	Incerteza
CLD	NO _x	Quimioluminescência	1%
MLT 3	O_2	Eletroquímico	1%
	CO_2	Infravermelho	1%
	СО	Infravermelho	1%
400 A	THC	FID	1%

TABELA 4.3- Módulos de aquisição e análise dos gases de combustão

FIGURA 4.3 - Rack com os módulos

4.1.3 Diâmetro Médio de Sauter e distribuição das gotas

Para se obter o SMD e a distribuição do tamanho das gotas em foi utilizada a técnica de interferometria óptica a laser.

Para a determinação do SMD e distribuição da porcentagem de volume das gotas foi utilizado o equipamento Malvern Spraytec®, que utiliza o princípio de funcionamento do espalhamento de luz laser para fazer a análise do spray pela teoria de Mie-Lorenz e Fraunhofer. Os dados aquisitados foram enviados ao notebook para análise no programa próprio do equipamento. O sistema é mostrado na Figura 4.4.

FIGURA 4.4 – Sistema Malvern Spraytec (VASQUEZ et. Al.,2011)

Onde:

- 1. Fonte de laser
- 2. Lente de colimação
- 3. Região de medida
- 4. Lentes coletoras
- 5. Sensor de espalhamento de luz
- 6. Central eletrônica

4.1.4 Ângulo do Spray

Esse ensaio teve como objetivo determinar o ângulo de spray do etanol em relação à pressão de injeção. A bancada de teste é composta de: sistema de pressurização do combustível, válvula de agulha controladora de vazão, suportes, câmera fotográfica digital

FIGURA 4.5 – Bancada de ensaio de ângulo de spray

4.2 Procedimentos de Ensaio

Nessa seção são descritos os procedimentos de ensaio.

4.2.1 Determinação do Tamanho e Distribuição de Gotas do Spray de Etanol

Foram utilizada lentes de Fourier com 300 mm de distância focal. Este tipo de lente é recomendado por LACAVA & ARGACHOY (2010) pelo fato do *spray* ocupar uma faixa larga do feixe de *laser* e permitir medir a distribuição do diâmetro de gota com valores entre 0,1 e 2500 µm (SPRAYTEC,2007).

O primeiro passo foi o posicionamento do injetor entre os módulos transmissores e receptores de luz. O injetor foi montado em um suporte capaz de se movimentar nos três eixos, de maneira que o injetor ficasse alinhado verticalmente ao eixo de simetria dos receptores. Logo à montante do injetor foram instalados: uma válvula agulha para controlar a

vazão do etanol e um manômetro para que a pressão real de injeção fosse medida. A Figura 4.6 mostra a montagem do injetor no equipamento.

FIGURA 4.6 – Montagem do experimento

O bom alinhamento do sistema é essencial para a precisão das medições (LACAVA e ARGACHOY, 2010). O alinhamento é feito automaticamente pelo programa de gerenciamento de aquisição e refeito a cada série de medição. A aquisição dos dados não é liberada enquanto o programa não finaliza o alinhamento automático.

No programa foi selecionado água como partícula, com índice de refração de 1,36 e ar com índice de refração 1,00 como dispersante.

A primeira série de medidas foi realizada a 30 mm abaixo do orifício de saída do injetor. Variou-se a pressão de injeção para valores entre 2 e 6 kfg/cm² em passo de 1 kgf/cm². Para cada pressão de alimentação foi realizada uma aquisição de 10 s.

A operação foi repetida para as distâncias de 40,50 e 60 mm em relação ao plano de sáida do injetor.

4.2.2 Determinação do Ângulo de Spray do Etanol

A câmera foi posicionada em uma posição frontal ao injetor. Ao fundo foi posicionado um anteparo negro para permitir melhor contraste na foto.

A câmera automática foi regulada para operar com flash a uma definição de 16 MP. A sensibilidade foi definida em ISO 800, em modo retrato e com o *flash* de preenchimento de

maneira que a velocidade do obturador fosse a maior possível. Dessa forma garantiu-se uma imagem instantânea do *spray*.

A pressão do reservatório de etanol foi regulada em 8,0 kgf/cm².

Variou-se a pressão de injeção para valores entre 2 e 7 kfg/cm² em passo de 1 kgf/cm².

A pressão real de alimentação foi regulada pela válvula agulha e conferida no manômetro tipo bourdon posicionado imediatamente à montante do injetor.

Foram selecionadas quatro fotos de melhor definição.

O ângulo total do spray foi medido em cada imagem no programa *Solidworks 2014*®. A média das medidas foi utilizada para a determinação do ângulo de abertura do *spray* em ao diferencial de pressão de alimentação. A Figura 4.7 mostra o ângulo de *spray* medido no programa *Solidworks 2014*.

FIGURA 4.7 – ângulo de spray

4.2.3 Determinação dos Parâmetros Termodinâmicos

Antes de se proceder aos ensaios calibrou-se os módulos de análise da concentração dos gases nos produtos de combustão.

Com o motor de arranque acoplado ao eixo do compressor iniciou-se o procedimento de partida do gerador de gases com GN.

Ao atingir auto-sustentação (20000 rpm) o motor de partida foi desconectado e desligado e deu-se início ao procedimento de ensaio.

A válvula de controle da alimentação de EHC foi aberta lentamente enquanto a válvula de controle de GN foi fechada até que o motor operasse somente com EHC. A válvula de corte do sistema de alimentação de GN foi fechada para garantir que não havia vazão desse combustível no injetor.

A vazão de EHC foi regulada para a vazão indicada de 8,4 g/s. Aguardou-se a estabilização da temperatura de saída dos gases e iniciou-se a aquisição dos dados. Os parâmetros termodinâmicos foram aquisitados via CLP e os dados de concentração dos produtos nos gases de combustão via transmissor sem fio. A rotação pelo programa de aquisição próprio do tacômetro.

A aquisição dos dados prosseguiu até que fossem coletadas pelo menos 30 amostras de cada parâmetro de desempenho e emissão.

Ao término da coleta de dados na vazão indicada de 8,40 g/s, abriu-se a válvula de agulha de maneira que a vazão fosse aumentada para 9,80 g/s e repetiu-se o procedimento de aquisição de dados. Na sequência o procedimento foi repetido para as vazões de 11,20; 12,60 e 14,00 g/s.

Foi anotada também a pressão de injeção de combustível.

Para que os parâmentros fossem aquistados em regime permanente, respeitou-se um intervalo de 60 s após a estabilização da vazão de combustível no rotâmetro.

Os dados aquisitados são mostrados no Apêndice B.

5 Resultados e Discussões

Este capítulo apresenta os resultados obtidos nos ensaios realizados na microturbina em diferentes condições de operação. Apresenta também a análise desses resultados e a correlação entre os dados obtidos. Os ensaios foram realizados com o objetivo de se observar o comportamento do etanol como combustível em uma microturbina a gás, relacionando a emissão de poluentes com o desempenho termodinâmico do gerador de gases e também com as características do *spray*.

5.1 Caracterização físico-química do EHC

O EHC comum foi comprado em um posto de abastecimento na cidade de São José dos Campos, SP. Para garantir a qualidade dos resultados foi empreendida a caracterização físico-química do combustível.

A massa específica e a umidade no EHC foram determinadas por meio de um densímetro Rudolph DDM2911.

O Poder Calorífico Superior (PCS) foi determinado em uma bomba calorimétrica IKA modelo C1.

O PCI foi calculado descontando-se do PCS o calor de vaporização da água gerada pelo processo de combustão e dá água presente no próprio combustível. A Equação 5.1 mostra a relação encontrada no balaço. A porcentagem de umidade em massa é representada por $\%H_2O_{massa}$.

$$PCI_{eta} = PCI_{eta} - 2257, 20.(1, 17 - 0, 17\% H_2 O_{massa})$$
5.1

A viscosidade cinemática foi obtida no viscosímetro Lauda Proline PV15.

A viscosidade dinâmica foi calculada pelo produto entre a viscosidade cinemática e a massa específica.

A tensão superficial foi calculada pela média ponderada das tensões superficiais do enanol (0,02275 kg.s⁻²) e da água (0,073 kg.s⁻²) conforme método descrito em ALLEN *et al.* (1999).

As propriedades obtidas são mostradas na Tabela 5.1.

Propriedade	Valor	Unidade
Teor alcóolico em volume	94,62	%
Teor alcóolico em massa	91,88	%
Massa específica	812,83	kg/m³
PCS	26935	kJ/kg
PCI	24677	kJ/kg
Viscosidade cinemática	1,613.10 ⁻⁶	m²/s
Viscosidade dinâmica	0,00131	kg/m.s
Tensão superficial	0,02683	kg/s²

TABELA 5.1- Propriedades físico-químicas do EHC utilizado.

A presença de água no combustível provoca variação em todas as características físico-químicas em relação ao combustível utilizado para o projeto. A análise dos resultados leva em consideração a alteração desses parâmetros.

O aumento da massa específica e a diminuição do poder calorífico devem acarretar aumento na vazão real do combustível. Tanto pelo fato de uma fração do líquido não ser combustível, quanto pelo fato de que essa porção de umidade vai ser evaporada, consumindo uma quantidade de energia do próprio combustível.

Estudos realizados por WANG e LEFEBVRE (1987) mostraram que tanto o maior valor da tensão superficial quanto o da viscosidade dinâmica, devem provocar aumento no tamanho das gotas.

O Guia para Expressão da Incerteza de Medição (INMETRO, 1998), apresenta dois tipos de incerteza:

- Incerteza Tipo A obtida pela análise estatística de uma série de observações;
- Incerteza Tipo B obtida por outros meios que não a análise estatística de uma série de observações.

A incerteza total foi calculada pela Equação 5.2

$$E_{c} = \sqrt{E_{e}^{2} + E_{t}^{2} + E_{i}^{2}}$$
 5.2

Onde os subscritos "e","t" e "i", indicam espaço, tempo e instrumento respectivamente.

SCHNEIDER (2005) afirma que as informações do fabricante, com faixa de erro máximo, sem caracterização estatística, podem ser consideradas incertezas do tipo B.

Considerando os desvios padrões em relação ao tempo de aquisição e desprezando-se a incerteza em relação à posição da sonda na tubulação de escapamento, como incerteza do tipo A.

O número mínimo para se utilizar uma distribuição normal é de 30 amostras (SPIEGEL,1994) e buscou-se que todos os dados que possuem aquisição contínua possuam no mínimo essa quantidade de amostras.

5.3 Frações molares dos gases de combustão

Os analisadores coletam as frações volumétricas, ou molares, dos gases de exaustão em base seca. De acordo com CARVALHO JR e LACAVA (2003), as concentrações de poluentes dever ser corrigidas para que possam ser analisadas na mesma base e evitar erros de análise causados pela diluição desses poluentes na exaustão do sistema.

A correção para excesso de oxigênio nos gasesde combustão é definida pela Equação 5.3. (CARVALHO JR e LACAVA, 2003; CONAMA, 2006).

- O

$$[i]_{bs,corr} = \frac{0,21 - [O_2]_{bs,corr}}{0,21 - [O_2]_{bs,real}} [i]_{bs,real}$$
5.3

Sendo [O₂]_{bs, corr} o valor de excesso de oxigênio que se deseja corrigir (15 %), [O₂]_{bs, real} o valor da concentração de oxigênio lida no analisador e [i]_{bs, real} a concentração do componente coletada no analisador. A Figura 5.1 mostra a variação da porcentagem de oxigênio nos gases de escape. Nota-se que há diminuição da presença de oxigênio nos gases de combustão. Esse comportamento demosntra que mistura ar/combustível fica menos pobre quando se exige mais do gerador de gases. Em razão da maior demanda de temperatura a razão de equivalência aumenta.

FIGURA 5.1 – Fração molar de oxigênio nos gases de escape.

Porém ao se analisar a Figura 5.2 percebe-se que a quantidade de CO_2 no escapamento do gerador de gases aumenta com o crescimento da rotação. Conforme demonstrado na seção 5.4, em maiores rotações as razões de equivalência globais são superiores, ou seja, a quantidade de carbono presente nos reagentes é maior.

A Figura 5.3 mostra que as emissões padronizadas de CO_2 mantem esse viés de subida, mas de maneira menos acentuada. Conforme se trouxe a análise para uma mesma condição houve variação mínima de emissões de CO_2 entre as condições de operação.

O efeito da combustão incompleta aparece na Figura 5.4. Observa-se que a combustão se torna mais completa à medida em que o motor é acelerado. Da mesma forma a queda da

presença de UHC (CH₄) com o aumento da rotação indica aumento na eficiência da reação de combustão. O comportamento da eficiência de combustão do EHC é analisada posteriormente.

FIGURA 5.2 – Fração molar de dióxido de carbono nos gases de escape.

FIGURA 5.3 – Fração molar padronizada de dióxido de carbono nos gases de escape.

FIGURA 5.4 – Fração molar padronizada de monóxido de carbono nos gases de escape.

O crescimento da razão de equivalência também justifica esse comportamento. Observa-se que mesmo que a combustão se torne mais completa, a taxa de enriquecimento da mistura anula parte do efeito de aumento de CO₂ pela melhora da eficiência da combustão.

FIGURA 5.5 – Fração molar de metano nos gases de escape.

Em misturas pobres o mecanismo predominante de formação de NO_x é o Térmico, ou de Zeldovich.

A formação de NO_x é governada principalmente pela temperatura, mas depende também da quantidade de oxigênio e nitrogênio disponíveis no reator. Ambas as condições são dependentes da razão de equivalência e essa tem relação direta com o aumento da rotação.

O experimento não mediu a temperatura diretamente na região de chama, mas a diferença de temperatura entre a saída da câmara de combustão e a temperatura ambiente pode ser usada como referência, além do cálculo da temperatura dos gases desenvolvido no projeto da câmara, para demonstrar que houve aumento de temperatura na zona de recirculação conforme a rotação cresce.

A Figura 5.6 mostra que tanto o ganho de temperatura real, quanto a temperatura calculada para a zona de recirculação aumentam com o aumento da rotação

FIGURA 5.6 – Ganho de temperatura, temperatura calculada na zona de recirculação e emissões de NO_x .

5.4 Análise das vazões mássicas de combustível e de ar

O rotâmetro usado para medida de vazão foi calibrado para a aquisição da vazão real de combustível que alimenta a microturbina.

A válvula agulha posicionada à montante do rotâmetro de maneira controla a vazão do combustível.

A vazão foi regulada para as seguintes marcas indicativas: 8,4; 9,8; 11,2; 12;6 e 14 g/s. A pressão de alimentação à montante da válvula de agulha foi ajustada para 7 kgf/cm².

Foram cronometradas três medidas de tempo consumido para que a balança indique uma variação de massa 500 g em cada ponto indicado no rotâmetro.

A Figura 5.7 mostra o comportamento da vazão real em relação à vazão indicada. A incerteza na indicação do rotâmetro é de 1 g/s.

A curva de correlação entre a vazão real de EHC e a vazão indicada com R^2 = 0,9763 é mostrada na Equação 5.4.

$$\dot{m}_{real} = 1,013729.\dot{m}_{ind} - 0,63716$$
 5.4

FIGURA 5.7 – Vazão real pela vazão indicada no rotâmetro

O controle da rotação da microturbina é relacionado à potência térmica entregue pelo combustível na câmara de combustão. Uma vez que o combustível utilizado em todos os ensaios foi o mesmo e, portanto não há variação do PCI entre os ensaios, a rotação do eixo é função direta da vazão mássica do combustível.

Dessa forma foi possível correlacionar a vazão mássica com a rotação do eixo do gerador de gases. Conforme esperado, mostra-se na Figura 5.8 que a relação entre os parâmetros é direta.

FIGURA 5.8 – Rotação x vazão real de combustível

A curva de correlação entre a rotação do eixo e a vazão real de EHC e a vazão indicada com R^2 = 0,9836 é mostrada na Equação 5.5.

$$rpm = -437,93.\,\dot{m}^2_{comb} + 12974.\dot{m}_{comb} - 20048$$
 5.5

Conforme demonstrado no mapa de desempenho do compressor o aumento da rotação do eixo promove um aumento na pressão entregue pelo compressor à câmara de combustão. A razão entre as pressões estáticas na entrada e na saída do compressor, medidas em relação à rotação é mostrada na Figura 5.9.

A curva de correlação entre a rotação do eixo e a a razão de pressão estática no compressor R^2 = 0,9836 é mostrada na Equação 5.6.

$$PR = 7.10^{-10}.\,\mathrm{rpm}^2 - 5.\,10^{-5}.\,\mathrm{rpm} + 2,2738$$

FIGURA 5.9 – Razão entre pressões estáticas na saída e na entrada do compressor

Uma vez definida a razão de compressão estática para cada rotação foi possível determinar a vazão mássica de ar e a eficiência do compressor para cada ponto medido.

O mapa de desempenho utilizado no projeto mostra a relação entre as pressões em termos de pressão total. Entretanto o pressostato adquiriu medida de pressão estática na saída do compressor.

A pressão ambiente foi medida por um barômetro de mercúrio, localizado no laboratório e corrigida pela temperatura ambiente lida em um termômetro de mercúrio.

A partir do mapa original foi criado um mapa relacionando as pressões estáticas, com o ajuda do programa Gasturb, às pressões totais nos pontos de projeto.

O procedimento realizado para determinar a vazão mássica de ar consistiu na interpolação dos valores de rotação medidos com os pontos da curva de desempenho para as rotações de 48, 64 e 77 krpm.

Os valores mostrados no mapa original foram reproduzidas no programa Origin® que gerou as curvas de desempenho para as rotações de referência.

Gerou-se para essas curvas linhas de tendência com R²=1 e cem valores correlacionando a vazão e a razão de pressões estáticas.

Em seguida interpolou-se cada um desses cem valores em relação à rotação coletada nos ensaios gerando uma curva de cem valores para cada uma dessas rotações.

Um vez definida a curva para cada rotação achou-se o valor de vazão mássica real com a razão de compressão medida.

O mesmo procedimento foi efetuado para a determinação da eficiência do compressor.

A Figura 5.10 mostra o mapa de desempenho do compressor na região de projeto e os pontos aquisitados. Os valores anotados ao lado dos pontos mostram a eficiência do compressor.

O mapa mostra a vazão de ar corrigida para as condições de projeto do compressor (P =100 kPa e T =298 K). A correção é feita pela Equação 5.7 sendo que os fatores de correção são definidos pela Equação 5.8.

$$\dot{m}_{ar,corr} = \dot{m}_{ar,real} \cdot \theta^{0,5} \cdot \delta$$
5.7

$$\theta = \frac{T_1}{298} \quad e \quad \delta = \frac{P_1}{100}$$
 5.8

3,1 70,5 ---- 48 krpm 64 krpm 77 krpm razão de pressão (estática) 71,4 2,6 71,2 56132 70,9 63070 71,6 71,4 2,1 67937 72058 70,9 75498 1,6 66,8 1,1 0,05 0,15 0,25 0,35 0,45 0,55 0,65 0,75 0,85 vazão de ar corrigida [kg/s]

Dessa forma a vazão mássica de ar corrigida foi convertida em vazão mássica real.

FIGURA 5.10 - Posição das medidas no mapa de desempenho do compressor

A razão de equivalência global foi determinada utilizando-se a quantidade real de etanol presente no combustível, ou seja descontando-se a quantidade de 8,12% de água em massa, e a vazão real de ar. Os valores de vazão de ar real e de razão de equivalência global são mostrados na Figura 5.11 e na Figura 5.12.

FIGURA 5.11 - Vazão mássica de ar x rotação

FIGURA 5.12 - Razão de equivalência x rotação

Assim que foram definidas as razões de equivalência em cada rotação, calculou-se a emissão de oxigênio pela equação de reação global do etanol. Os valores calculados são comparados com os valores medidos na Figura 5.13.

A Figura 5.13 mostra que o comportamento da emissão de oxigênio em cada condição de operação condiz com o esperado. A maior divergência é de 2,61 % na menor rotação. Esse resultado valida os cálculos anteriores em relação às vazões de ar.

FIGURA 5.13 – Comparativo entre emissões de oxigênio.

5.5 Características do spray

O injetor foi projetado para operar nas condições de temperatura e pressão no interior da câmara de combustão. Os ensaios foram realizados nas condições ambientes do laboratório. Essas condições variaram em decorrência da data em que os procedimentos foram realizados.

Para a análise dos resultados foi simulado no programa MathCad® o comportamento do *spray* para as condições ambientais medidas no laboratório nos dias de ensaio. Os dados aquisitados experimentalmente foram então comparados com os obtidos na simulação a frio.

5.5.1 SMD e Eficiência de Combustão

Além do método utilizado no projeto do injetor (COUTO *et al.*,2009), outras maneiras de determinação do SMD são encontradas em LEFEBVRE (1989). Esta referência mostra as equações para cálculo de SMD desenvolvidas por RADCLIFFE (1960), JASUJA (1979), e LEFEBVRE (1983) e BABU *et al.* (1982).

As três primeiras são da forma clássica de correlação entre as propriedades do líquido e características do escoamento mostrada na Equação 5.9

$$SMD = constante. \sigma_{liq}^{a} \mu_{liq}^{b} \rho_{liq}^{c} \dot{m}_{liq}^{d} \Delta P_{inj}^{e}$$
5.9

São mostradas respectivamente nas Equações de 5.10 a 5.12

SMD = 7,3.
$$\sigma_{liq}^{0,6} \mu_{liq}^{0,2} \rho_{liq}^{-0,2} \dot{m}_{liq}^{0,25} \Delta P_{inj}^{-0,4}$$
 5.10

SMD = 4,4.
$$\sigma_{liq}^{0,6} \mu_{liq}^{0,16} \rho_{liq}^{-0,16} \dot{m}_{liq}^{0,22} \Delta P_{inj}^{-0,43}$$
 5.11

SMD = 2,25.
$$\sigma_{liq}^{0,25} \mu_{liq}^{0,25} \rho_{liq}^{-0,25} \dot{m}_{liq}^{0,25} \Delta P_{inj}^{-0,5} \rho_{gas}^{-0,25}$$
 5.12

E a última leva em consideração o número de escoamento (FN) definido na Equação 5.13 por LEFEBVRE (1989) como a área de escoamento efetiva em um atomizador. Apresentada pelas Equações 5.14 e 5.15 válidas para $\Delta P_{inj} < 2,8$ MPa e $\Delta P_{inj} > 2,8$ MPa nessa ordem.

$$FN = \frac{\dot{m}_{liq}}{\sqrt{\rho_{liq}\Delta P_{inj}}}$$
5.13

SMD = 133.
$$\frac{FN^{0,64291}}{\Delta P_{inj}^{0,22565} \rho_{liq}^{0,3215}}$$
 5.14

SMD =
$$133. \frac{FN^{0,75344}}{\Delta P_{inj}^{0,19936} \rho_{liq}^{0,3767}}$$
 5.15

Todas as equações mostram a influência do diferencial entre a pressão de injeção e a pressão no ambiente em que o líquido é injetado. Trabalhos desenvolvidos por WANG e LEFEBVRE (1987) e COUTO *et al.* (2009) demonstram que na realidade o tamanho da gota diminui com o aumento da pressão de injeção para uma determinada pressão ambiente.

A Figura 5.14 mostra que esse comportamento ocorreu nas distâncias ensaiadas em comparação aos valores simulados nas condições de ensaio, sendo que nas distâncias de 50 e 60 mm esses valores são praticamente coincidentes. Portanto o *spray* encontra-se plenamente desenvolvido a 50 mm da face do atomizador.

A Figura 5.14 mostra ainda que os métodos que mais se aproximaram para determinação do tamanho das gotas são os definidos por RADCLIFFE (1960) e BABU *et al.* (1982). Os modelos de JASUJA (1979) e LEFEBVRE (1983) e COUTO *et al.* (2009), mostraram valores subdimensionados aos aquisitados em ensaio.

Os valores de SMD foram aquisitados em condições próximas ao à condição de maior pressão e vazão. Para análise do comportamento do tamanho de gota nas condições de operação foi realizada a simulação do cálculo de SMD para as condições de ensaio.

A Figura 5.15 mostra a variação da pressão de injeção e da pressão na saída do compressor para as condições de operação. Os ensaios foram realizados a P_{amb} =98066 Pa e T_{amb} = 301,15 K. A Figura 5.16 mostra que houve variação da temperatura na saída do compressor em relação à rotação de ensaio.

Os valores de SMD foram simulados, para as condições de ensaio, de acordo com os métodos de RADCLIFFE (1960) e BABU *et al.* (1982) e são mostrados na Figura 5.17.

FIGURA 5.14- SMD x diferencial de pressão

FIGURA 5.15 - Pressão de injeção e pressão na câmara de combustão

FIGURA 5.16 – Temperatura na saída do compressor

FIGURA 5.17 - SMD nas condições de ensaio

Conforme esperado o tamanho das gotas diminui com o aumento da rotação, pois o aumento na vazão do combustível é acompanhado pelo aumento da pressão de injeção.

Na realidade, para as condições reais de operação o tamanho das gotas é menor ainda devido a maior pressão e a temperatura mais alta na zona de recirculação aceleram a vaporização do combustível.

Esse comportamento facilita a interação entre o combustível e o ar o que deve promover combustão mais e diminuição das emissões de CO e UHC.

Além do SMD, a distribuição dos tamanhos de gota que originaram esses números deve ser observada para uma análise mais completa. Conforme COUTO *et al.* (2009) as gotas com tamanho menor que 19 μ m possuem baixa penetração no escoamento e normalmente causam acúmulo de combustível vaporizado nas proximidades a jusante do injetor.

Esse acúmulo pode levar a formação de fuligem. As gotas com diâmetro maior que 100 µm possuem um tempo de vaporização mais alto, o que aumenta o comprimento da mistura e consequentemente da região de chama.

A melhor faixa para o projeto é a intermediária entre 19 µm e 100 µm devido à qualidade de penetração e a rápida taxa de vaporização na câmara de combustão.

Da Figura 5.18 à Figura 5.21 é possível analisar a distribuição da porcentagem volumétrica do SMD em cinco faixas para as condições de pressão ensaiadas nas várias distâncias. Essas figuras resumem os dados adquiridos pelo sistema Malvern que são apresentados no Apêndice C.

Verificou-se que na posição de 30 mm que para todas as pressões somente a última faixa de diâmetro (>215 μ m) não aumentou. O aumento da proporção ocorreu de maneira mais acentuada nas faixas intermediárias do que na inicial (<21 μ m).

Comportamento semelhante foi observado nas distâncias de 40, 50 e 60 mm. Nota-se porém que para 50 mm há um aumento na quarta faixa (158-215 μ m) e para 60 mm esse incremento ocorre na última faixa (>215 μ m). Esse fenômeno é explicado pela coalescência das gotas do *spray* que retornam ao rebater no coletor de combustível instalado no equipamento.

FIGURA 5.18– Porcentagem volumétrica de gotas em função da pressão de injeção para cinco faixas de diâmetro a 30 mm do orifício de saída do injetor

FIGURA 5.19 – Porcentagem volumétrica de gotas em função da pressão de injeção para cinco faixas de diâmetro a 40 mm do orifício de saída do injetor

FIGURA 5.20 – Porcentagem volumétrica de gotas em função da pressão de injeção para cinco faixas de diâmetro a 50 mm do orifício de saída do injetor

FIGURA 5.21 – Porcentagem volumétrica de gotas em função da pressão de injeção para cinco faixas de diâmetro a 60 mm do orifício de saída do injetor

O fato do injetor atomizar o combustível em valores maiores de SMD que os definidos por COUTO *el al.* (2009) não interferiu na operação da microturbina com EHC. A influência desse resultado na eficiência de combustão e consequentemente nas emissões de poluentes resultantes de combustão incompleta foi mínima.

Apesar de uma boa parte da gotas apresentar diâmetro elevado, outros parâmetros foram importantes para se atingir uma vaporização completa, especialmente ligados ao projeo da câmara de combustão, a saber:

- Uma zona de recirculação é intensa, o que mesmo boa parte das gotas sendo grandes, ajuda a aumentar o processo de vaporização. A zona de recirculação aprisiona essa gotas grandes em uma região quente e turbulenta, promovendo uma vaporização rápida nesse local.
- 2. O tempo de residência adequado tanto na zona primária quento na zona primária para queima aproximadamente completa.

Conforme discutido anteriormente a presença de CO e UHC nos gases de escape demonstra ineficiência no processo de combustão. A relação entre os índices de emissão desses poluentes e a eficiência de combustão é apresentada por MELCONIAN e MODAK (1985) na e por BAHR (1972) define uma relação entre os índices de emissão de CO e UCH conforme mostrado na Equação 5.16

$$1 - \eta_{combustão} = (0,232 EI_{CO} + EI_{UHC}) \cdot 10^{-3}$$
5.16

O índice de emissão é a relação entre a vazão mássica do composto e a vazão mássica do combustível conforme mostra a Equação 5.17.

$$\mathrm{EI}_{[i]} = \frac{\dot{m}_{[i]}}{\dot{m}_{comb}}$$
5.17

As vazões mássicas dos componentes dos gases de combustão são obtidas pelo balanço de massa demonstrado detalhadamente em SILVA (2009) e resumido nesse trabalho.

SILVA (2009) parte da equação real de combustão em termos de vazão molar. O valor da emissão de NO_x foi negligenciado nessa primeira etapa.

$$\dot{N}_{comb}$$
. $C_x H_y O_z + \dot{N}_{ar}$. $(O_2 + 3,76.N_2) \rightarrow a. CO_2 + b. CO + c. H_2 O + d. N_2 + e. O_2$ 5.18

As vazões molares do combustível e do ar são determinadas pela razão entre a vazão mássica e sua massa molecular (Equação 5.19 e Equação 5.20).

$$\dot{N}_{comb} = \frac{\dot{m}_{comb}}{MW_{comb}}$$
5.19

$$\dot{N}_{ar} = \frac{\dot{m}_{ar}}{28,84}$$
5.20

O denominador da razão de concentração para cada componente é definido por SILVA (2009) pela Equação 5.21.

$$\mathbf{t} = \mathbf{x}.\,\dot{\mathbf{N}}_{comb} + \dot{\mathbf{N}}_{N_2} + \frac{\left(\mathbf{x}.\,\dot{\mathbf{N}}_{comb} + \dot{\mathbf{N}}_{N_2}\right).\,[O_2]_{bs}}{1 - [O_2]_{bs}}$$
5.21

E as vazões mássicas em "g/s" de cada componente considerando-se os UHCs como CH₄.

$$\dot{m}_{CO} = [CO]_{bs}$$
.t.28 5.22

$$\dot{\mathbf{m}}_{UHC} = \left[UHC \right]_{bs} \text{ t. 16}$$
5.23

E então o índice de emissão foi calculado pela Equação 5.7.

A Figura 5.22 mostra a relação o SMD, a presença de CO e UHC nos gases de exaustão e a eficiência de combustão. O SMD mostrado na primeira curva é a média dos valores presentes na Figura 5.17.

FIGURA 5.22 – Eficiência de combustão relacionada ao SMD e às emissões de CO e UHC.

Nota-se que o aumento da rotaão provoca uma melhora na eficiência de combustão pela redução de CO e UHC. Esse fato pode ser explicado por três razões:

- 1. Redução do SMD.
- Aumento da vazão de ar e por consequência maior intensificação da zona de recirculação.
- Aumento da temperatura e pressão na câmara e consequente aumento da velocidade de reação de combustão.
No entanto deve-se notar que a variação da eficiência de combustão foi da ordem de 0,1%, o que significa que o projeto da câmara, independentemente das variações, apresentase adequado para o intervalo de operação da microturbina.

A Figura 5.23 mostra que a eficiência de combustão, calculada para o projeto, na saída da zona de diluição é ligeiramente maior do que a calculada pelas emissões de CO e NO_x . Aparece uma convergência entre o comportamento das dus curvas nas situações de maior rotação, ou seja, a atomização mais refinada do spray corrobora com a previsão de projeto. Contudo, deve-se observar que a máxima diferença entre os valore é de 0,12 pontos porcentuais. Portanto pode-se dizer que os resultados experimentais espelharam o que foi adotado no projeto.

FIGURA 5.23 – Eficiência de combustão relacionada às emissões de CO e UHC e admitida na saída da zona de diluição.

5.5.2 Ângulo de Spray

Os valores médios e a variação dos valores em relação à pressão são comparados quanto aos valores teóricos simulados para as condições de ensaio são representados na Figura 5.24. As fotos dos ensaios são mostradas no Apêndice D.

Os resultados mostraram que a abertura medida é maior que as calculadas por BAZAROV (2004) e RISK e LEFEBVRE (1985) . Na simulação utilizando a equação descrita por RISK e LEFEBVRE (1985) o aumento da pressão de injeção provocaria um aumento no ângulo do cone enquanto que a previsão feita por BAZAROV (2004) mostra que o *spray* já está bem desenvolvido nas condições propostas.

Os trabalhos de HAMID e ATAN (2009) (1,5 a 6bar), YULE e WIDGER (1996) (2 a 16 bar) HAMID *et al.*(2011) (1 a 7,5bar) , HALDER *et al.* (2004) e RASHID (2012) (2 a 8 bar) mostram a tendência de aumento do ângulo do cone com o incremento da pressão de injeção.

Entretanto os resultados dos ensaios comprovam o comportamento predito por BAZAROV (2004), porém o ângulo se mostra mais aberto.

Essa situação favorece que a queima do combustível ocorra na recirculação dos gases.

FIGURA 5.24 – Ângulo de abertura do spray

5.6 CONAMA 382/2006

O anexo V da resolução CONAMA 382 de 2006 estabelece os limites de emissões de NO_x e CO para turbinas a gás operando com gás natural e combustíveis líquidos visando a geração de energia elétrica conforme mostra a Tabela 5.2.

Estes limites servem para instalações em ciclo simples ou combinado cuja potência seja superior a 100MW. Para instalações onde a somatória da potências atinge 100 MW esses

valores são considerados individualmente. São dados em mg/Nm³ com 15% de excesso de ar em base seca.

TABELA 5.2– Limites de emissões de poluentes para turbinas a gás (Adaptada de CONAMA, 2006).

Tipo de combustível	$NO_x (NO_2)$	СО	$SO_x (SO_2)$	MP	
Gás natural	50	65	-	-	
Combustíveis líquidos	135	-	200	50	

O primeiro tratamento a ser concluído foi a conversão dessa unidades em mg/Nm³. A fração volumétrica que é o mesmo que fração molar ou portanto essa razão pode ser definida pela Equação 5.24.

$$[i]_{bs,corr} = \frac{N_i}{\sum_{i=1}^k N_i}$$
5.24

Sendo $i = O_2$, CO_2 , N_2 ... etc e $i \neq H_2O$

Portanto a concentração em mg/Nm³ é determinada conforme a Equação 5.25.

$$[i]_{bs,mg/Nm^3} = \frac{MW_i \cdot 10^3}{22,4 \cdot 10^{-3}} [i]_{bs,[\%]}$$
5.25

Sendo 22,4.10³ é o volume molar em Nm³/mol e MW_i é a massa molar do componente em g/gmol.

Para os valores aquisitados em ppm utilizar a Equação 5.26

$$[i]_{bs,mg/Nm^3} = 10^6 \cdot \frac{MW_i \cdot 10^3}{22,4 \cdot 10^{-3}} [i]_{bs,[\%]}$$
5.26

Dessa forma os resultados da aquisição para esses componentes são apresentados em mg/Nm³, base seca e corrigida para 15% de oxigênio. A Figura 5.25 mostra os valores da concentração de NO_x em base seca e corrigidos a 15% de O₂ obtidos nos ensaios. A linha horizontal em 135 mg/Nm³ mostra o limite superior definido pela resolução 382/2006 do CONAMA. Obsserva-se que em nenhuma situação os valores de emissões são superiores ao limite.

Para combustíveis líquidos não há limitação de emissões de CO. O CONAMA entende que a regulação de emissões de meteriais particulados é suficiente para garantir que a qualidade de queima seja suficiente para garantir baixa emissão de CO. Porém o observandose a Figura 5.26 nota-se que os valores de CO emitidos são muito inferiores aos limites estabelecidos para o gás natural.

Além desse fato, a concentração de NO_x ficou próxima à do limite estabelecido para o gás natural. Esse fato mostra que em uma necessidade de se precisar operar uma planta termelétrica, a gás natural, com combustível líquido, o etanol é mais ambientalmente amigável que a utilização de diesel ou querosene.

FIGURA 5.25 – Concentração de NO_x corrigido a 15% de O_2

FIGURA 5.26 – Concentração de CO corrigido a 15% de O₂

rotação do eixo [rpm]

70000

80000

60000

0.

50000

6 Conclusões

Como citado no início do trabalho, o seu principal objetivo foi verificar se uma metodologia desenvolvida para queima do querosene em turbinas a gás seria adequada para projetar uma câmara de combustão a etanol. Para isso um combustor foi projetado por essa metodologia, juntamente com o atomizador de combustível. Ensaios foram realizados para verificar o desempenho e as emissões da câmara/injetor projetados. Desta forma as principais conclusões estão listadas na sequência:

1) A bancada não apresentou problemas operacionais quanto aos limites de inflamabilidade e temperatura nas paredes do tubo de chama. A partida foi realizada com um injetor auxiliar de gas natural com a finalidade de garantir a ignição do etanol somente após o pleno desenvolvimento do *spray*. No procedimento de parada também a alimentação de combustível também foi comutada para GN com a finalidade de esgotar qualquer resíduo de líquido dentro da câmara de combustão. O injetor de GN não é capaz de operar nas condições de rotação necessárias para os ensaios.

2) Os métodos apresentados por MELCONIAN e MODAK (1985) e LEFEBVRE e BALLAL (2010) para projeto de câmaras de combustão de turbinas a gás operando com hidrocarbonetos, podem ser utilizados para desenvolver combustores que funcionem com EHC. O projeto foi desenvolvido considerando-se o EAC e suas características e os ensaios foram realizados com EHC. A presença de 8,12% de água em massa no combustível não alterou a operação da câmara. Em nenhum momento houve apagamento de chama durante os ensaios. O trabalho de NAVIA (2010) também pode ser utilizado como referência para o projeto de combustores para etanol

3) O gerador de gases foi projetado para operar entre 48000 e 77000 rpm. Todos os ensaios ocorreram dentro dessa faixa conforme é demonstrado no mapa com os resultados. O compressor trabalhou com eficiência menor que a máxima produzindo menor razão de pressão e maior vazão mássica de ar. Devido a essa razão não foi possível determinar a vazão de combustível na rotação máxima

de projeto 77000 rpm pois chegou-se à escala máxima do rotâmetro. A máxima rotação de ensaio é de 75802 rpm.

- 4) O injetor operou em todas as condições de ensaio, não apresentando apagamento de chama e nem gotejamento na carcaça da câmara. O método apresentado por ALVES e LACAVA (2009) mostrou-se adequado para o projeto do injetor. Porém os métodos que melhor refletiram a previsão do SMD foram os definidos por RADCLIFFE (1960) e BABU *et al.* (1982) e não o sugerido por COUTO *et al.* (2009). Tanto esse modelo quanto os de JASUJA (1979) e LEFEBVRE (1983) e COUTO *et al.* (2009), mostraram valores subdimensionados aos aquisitados em ensaio.
- 5) O SMD maior que os valores sugeridos por COUTO *et al.* (2009) não apresentou influência na operação da bancada. A variação do SMD com o aumento da rotação mostrou correlação inversa à eficiência de combustão. O SMD diminuiu com o aumento da rotação. Na verdade o que influenciou a redução do SMD foi o aumento simultâneo da vazão e da pressão de injeção que ocorreram quando se acelera o gerador de gases. Esse fenômeno provocou a redução das emissões de CO e UHC nos gases de combustão. Qualitativamente este comportamento já reflete melhora na eficiência de combustão. Quantitativamente a expressão de BAHR (1972) mostrou esse comportamento. Os valores de eficiência de combustão ficaram entre 99,62 e 99,88% para as condições de ensaio. A previsão de acordo com MELCONIAN e MODAK (1985) era de 99,92 a 99,99 % na saída da zona de diluição. O valor de 99,99% foi previsto para 77000 rpm. Há que se notar que não foram feitas medidas de presença de material particulado no escapamento. Essa diferença de valores é desprezível.
- 6) O ângulo do *spray* foi ligeiramente subdimensionado e previu-se um comportamento constante. Contudo nos ensaios demonstrou-se um ligeiro aumento da abertura do spray com o aumento da pressão de injeção. Deve-se observar que o atomizador foi projetado para operar no ponto de máxima vazão e nas condições reais da zona de recirculação. Os ensaios foram realizados em condições ambientes do laboratório em pressões próximas às de injeção.

- 7) Houve aumento da razão global de equivalência com o aumento da rotação. Consequentemente esse comportamento se repetiu na zona primária provocando o aumento de temperatura na região de combustão. Como resultado gerou-se um aumento nas emissões de NO_x no escapamento. Esse comportamento também é explicado pela curva de temperatura teórica na zona de recirculação.
- 8) Mesmo que a microturbina não esteja sujeita à resolução CONAMA 382/2006 as emissões de NO_x se mostraram bem inferiores ao limite de 135 mg/Nm³ expresso. O maior valor de concentração de NO_x apresentou valor de 76,78 mg/Nm³, em base seca e corrigidos a 15% de O₂.

Conclui-se finalmente que o projeto e a montagem da bancada satisfizeram o objetivo de permitir o estudo da combustão do EHC em uma câmara de microturbina a gás.

6.1 Sugestões para Trabalhos Futuros

Sugere-se para futuros trabalhos que seja projetado um injetor híbrido próprio para vazões em condições de rotação comparáveis com as da operação com etanol de maneira a comparar os resultados entre os dois combustíveis.

Sugere-se ainda que seja realizada uma comparação entre o etanol, biodiesel, diesel e querosene.

Referências Bibliográficas

ALFARO-AYALA, J.A.; GALLEGOS-MUÑOZ, A.; URIBE-RAMIREZ, A.R.; BELMAN-FLORES, J.M. Use of bioethanol in a gas turbine combustor. Applied Thermal Engineering, No. 61, pp 481-490, 2013.

ALLEN, C.A.W.; WATTS, K.C.; ACKMAN R.G. Predicting the surface tension of biodiesel fuels from their fatty acid ester composition, 1999, Journal of American Oil Chemist Society, Vol. 76, number 3, USA, pp. 317–323.

AGÊNCIA NACIONAL AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. **ANP 36:2011**: Brasília, DF, 2011.

ALVES, A.; LACAVA, P.T. Injeção de combustível. In: **Combustão em turbinas a gás**. II Escola de Combustão, 2009.

AMERICAN PETROLEUM INSTITUTE. **API** 616: 2001: Gas turbines for the petroleum, chemical and gas industry services.

BALLESTER, J.M.; DOPAZO, C. Experimental study of the influence of atomization characteristics on the combustion of heavy oil. **Combustion Science and Technology**, v.103, p. 235-263, 1994.

BABU, K.R.; NARASHIMAN, M.V.; NARAYAMASWAMY, K. **Prediction of mean drop size of fuel sprays from spray swirl atomizers.** Proceedings of the 2nd International Conference on Liquid Atomization and Sprays, Madison, Wis. 1982 p99-106.

BAHR, D. W. Control and Reduction of Aircraft Turbine Engine Exhaust Emissions. In: CORNELIUS, W., AGNEW, W. G. (Ed.) **Emissions from Continuous Combustion Systems**. New York: Plenum, 1972. p.345-72.

BASTOS-NETTO, D.; COUTO, H.S.; MUNIZ, W.F. Geometrical parameters for flows across axial swirlers. In: APISCEU - Asian Pacific International Symposium on Combustion and Energy Utilization, 3., Hong-Kong, 1995. Proceedings . Hong Kong: Polytechnic, 1995. p. 255-260.

BAZAROV, V. Design and dynamics of jet and swirl injectors. Paul Zaechan, 2004.

BEER, J. M.; CHIGIER N. A., Combustion Aerodynamics. Applied Science, London, 1972

BIST, S. N. Development of vegetable lipids derived fatty acid methyl esters as aviation turbine fuel extenders. 2004 Master thesis. Purdue University. West Lafayette, IN. USA.

BREAUX, B.B.; ACHARYA, S. The effect of elevated water content on swirl stabilized ethanol/air flames. Fuel, No. 105 pp 90-102, 2013.

BRUNO, J. C.; CORONAS, A., Distributed Generation of Energy Using Micro Gas Turbines : Polygeneration Systems and Fuel Flexibility, **Proceedings of the International Conference on Renewable Energy and Power Quality** (ICREPQ'04), 2004.

CARVALHO JR, J.A.; LACAVA, P.T. Emissões em processos de combustão. São Paulo: UNESP, 2003.

CARVALHO JR, J.A.; McQUAY, M.Q. **Princípios de combustão aplicada.** Florianópolis: UFSC, 2007.

CAVARZERE, A.; MORINI, M.; PINELLI, M.; SPINA, P.R.; VACCARI, A.; VENTURINI, M. Experimental analysis of a micro gas turbine fuelled with vegetable oils from energy crops. Energy Procedia, No. 45 pp 91-100, 2014

CHIGIER, N. Energy, combustion and environment. New York: McGraw Hill, 198.

CONRADO, A. **Metodologia para projeto de câmara de combustão de turbina a gás.** 2002, 137f. Trabalho de Conclusão de Curso (Graduação em Engenharia Aeronáutica) – Instituto Tecnológico de Aeronáutica, São José dos Campos.

CONSELHO NACIONAL DO MEIO AMBIENTE RESOLUÇÃO No- 403, DE 11 DE NOVEMBRO DE 2008.

CONSELHO NACIONAL DO MEIO AMBIENTE RESOLUÇÃO No- 382, DE 26 DE DEZEMBRO DE 2006.

COSTA, R.C.; SODRÉ, J.R. Hydrous etanol vs. gasoline-ethanol blend: Engine performance and emissions. Fuel, No. 89 pp. 287-293, 2012.

COUTO, H.S.; LACAVA, P.T.; BASTOS-NETTO, D.; PIMENTA, A.P. 2009, **Experimental Evaluation of Low Pressure-Swirl Atomizer Applied Engineering Design Procedure**, 2009 Journal of Propulsion and Power, Vol. 25, number 2 p 358-364.

ODGERS, J.; CARRIER, C. Modeling of gas turbine combustors; considerations of combustion efficiency and stability. ASME Journal of Engineering for Power, Vol 95, N° 2, April 1973, pp 105-113.

DURDINA. L.; JEDELSKY, J.; JICHA. M. Investigation and comparison of spray characteristics of pressure-swirl atomizers for a small-sized aircraft turbine engine. **International Journal of Heat and Mass Transfer,** n. 78, p 892–900, 2014.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, Technology Characterization: Microturbines December 2008.

FENIMORE, C. P. Formation of Nitric Oxide in Premixed Hydrocarbon Flames. Proc. of the Thirteenth Symposium (International) on Combustion,p.373-80, 1971.

GENERAL ELECTRIC. As primeiras turbinas de etanol do mundo. **GE reports Brasil**, 10, Maio, 2011. Disponível em: <http://www.gereportsbrasil.com.br/post/96000797694/primeiras-turbinas-a-etanol-domundo)>. Acesso em: 15 Abr. 2015.

GENERAL ELECTRIC AVIATION. **The LM6000 engine**. Disponível em: http://www.geaviation.com/marine/engines/military/lm6000/>. Acesso em: 15 Abr. 2015.

GIAMPAOLO, T. Gas Turbine Handbook: Principles and Practice. Ed 4. 2006.

GÖKALP, I.; LEBAS, E. Alternative fuels for industrial gas turbines (AFTUR). Applied Thermal Engineering, No. 24 pp 1655-1663, 2004.

GOSSELIN, P.; DE CHAMPLAIN, A., KRETSCHMER, D. Prediction of wall heat transfer for a gas turbine combustor. Proceedings of The Institution of Mechanical Engineers Part A: Journal of Power and Energy.1999. n. 213 p 169-180. GIFFEN, E.; MASSEY, B.S. Report 1950/5. Motor Industry Research Association, UK, 1950.

GREENHOUGH, V. W.; LEFEBVRE, A. H. Some Applications of Combustion Theory to Gas Turbine Development. IN: SIXTH SYMPOSYUM (INTERNATIONAL) ON COMBUSTION, 1957 p. 858–69.

GUPTA, K.K.; REHMAN, A.; SARVIYA, R.M. **Bio-fuels for the gas turbine: a review.** Renewable and Sustainable Energy Reviews, No. 14 pp 2946-2955, 2010.

HALDER M.R.; DASH, S.K.; SOM S.K. A numerical and experimental investigation of the coefficients of discharge and the spray cone angle of a solid cone swirl nozzle. Experimental Thermal and Fluid Science 28 (2004) 297-305.

HAMID, A.H.A., ATAN R., NOHR, M.H.M., RASHID, H. Spray Cone Angle and Air Core Diameter of Hollow Cone Swirl Rocket Injector. 2011, Engineering Journal. 12

HAMID, A.H.A., ATAN R. Spray Characteristics of Jet-Swirl Nozzles for Thrust Chamber Injector.2009, Journal of Aerospace Science and Technology. 13,p 192-196.

HARRINGTON, J.E.; SMITH, G.P.; BERG, P.A.; NOBLE, A.R.; JEFFRIES, J.B.; CROSLEY, D.R. **Evidence for a new no production mechanism in flame.** Symposium (International) on Combustion, Volume 26, Issue 2, 1996, Pages 2133–2138.

HOTTEL, H. C. Some Problems in Radiative Transport. In: OLFE, D. B.; PENNER, S. S. International Developments in Heat Transfer, ASME, New York, pp. 126–33, 1960.

INSTITUTO NACIONAL DE METROLOGIA. Guia para a Expressão da Incerteza de Medição, Instituto Nacional de Metrologia, Rio de Janeiro, 1998.

INTERNATIONAL STANDARDIZATION ORGANIZATION. **ISO 2314**:2009: Gas turbines – acceptance tests.

JASUJA, A.K., Atomization of crude and residual fuel oils. ASME Journal of Engineering and Power, Vol 101, N° 2, p250-258, 1979.

KHALIL, A.E.E.; GUPTA, A. Fuel flexible distributed combustion for efficient and clean gas turbine. Applied Energy, No. 109 pp 267-274, 2013.

KESSAEV, K. Theory and calculation of liquid propellant rocket engine. Moscow Aviation Institute, Moscow, 2006.

KNIGHT, M. A.; WALKER, R. B., **The Component Pressure Losses in Combustion Chambers**. Aeronautical Research Council R and M 2987, UK, 1957 KRETSCHMER, D.; ODGERS, J. **A Simple Method for the Prediction of Wall Temperatures in a Gas Turbine Combustor.** ASME Paper 78-GT-90, 1978.

KULSHARESHTA, D.B. and CHANNIWALLA, S.A., **Design and Development of Combustion Chamber for Small Gas Turbine Power Plant.** 2005. Paper SAE 2005-26-317.

LACAVA, P.T.. ARGACHOY, C. Difração de luz para determinação da distribuição de tamanho de gotas. In: LACAVA, P.T.; MARTINS, C.A.. Métodos experimentais de análise aplicados à combustão. 1ª ed: Papel Brasil, 2010, cap V, 155-184.

LACAVA, P. T.; MACIEL, H.S. Turbina a Etanol para Aeronaves. Engenharia Automotiva e Aeroespacial, SAE - Brasil - São Paulo, p. 42 - 46, 01 maio 2010

LEFEBVRE, A. H. Theoretical Aspects of Gas Turbine Combustion Performance. CoA Note Aero No. 163, Cranfield University, UK, 1966.

LEFEBVRE A.H., Atomization and sprays. CRC Press, 1989.

LEFEBVRE A.H., Gas turbine combustion. Hemisphere, Washington DC, 1983.

LEFEBVRE, H.; BALLAL, D.R,. **Gas turbine combustion:** alternative fuels and emissions. England: CTCPress, 2010, 3th ed. 590 p.

LEFEBVRE, A.H.; HERBERT, M. V. Heat-Transfer Processes in Gas Turbine Combustion Chambers. Proceedings of the Institution of Mechanical Engineers, Vol. 174, No. 12, pp. 463–73, 1960.

LOPP, D.; TANLEY, D.; ROPP. T.; CHOLIS, J. **Soy-diesel blends use in aviation turbine engines.** Aviation technology department of Purdue University.

MALVERN, Spraytec user manual MAN0368. 2007.

MALÝ, M. **Quality of fuel atomization from small pressure-swirl atomizers.** 2014. 51f. Thesis (Bachelor in Mechanical Engineering) – Brno Institute of Technology, Brno, Czech Republic.

MANKINS, J.C. **Technology readiness assessments: a retrospective.** Acta Astronautica, No. 65 pp1216-1223, 2009.

MARCHIONE, T.; ALLOUIS, C.; AMORESANO, A.; BERETTA, F. **Experimental investigation of a pressure swirl atomizer spray.** 2007 Journal of Propulsion and Power, Vol. 23, number 5 p 1096 - 1111.

MELCONIAN, J.O; MODAK, A.T. Combustor design. In: SAWYER, J.W. (Ed.) **Sawyer's gas turbine engineering handbook design**. Volume 1, Theory and design. 3. Ed. Connecticut: Turbomachinery International Publications, 1985. V.1, Chapter. 5 p 5-1-5-62.

MELO, T.C.C; MACHADO, G.B., BELCHIOR, C.R.P.; COLAÇO, M.J.; BARROS, J.E.M.; OLIVEIRA, E.J.; OLIVEIRA D.G. **Hydrous etanol-gasoline blends** – **combustion and emission investigations on a flex-fuel engine.** No. 97 pp796-804, 2012.

MIMURA, N. Biodiesel fuel: a next microturbine challenge. 2003. www.ornl.gov.

MISHRA, D. P.; REDDY,U. K. Investigation on spray behavior in the transition regime of a pressure-swirl atomizer. Proceedings of 10th International Conference on Liquid Atomization and Spray, Kyoto, 2006.

MUNIZ,W.F.; COUTO, H.S.; RIBEIRO, G.L.S.; e BASTOS-NETTO, D. Flame Holding Performance of Axial Swiler. 5th Asian-Pacific Symposium, 1998

NASCIMENTO, M.A.R.; RODRIGUES, L.O.; SANTOS, E.C.,GOMES, E.B.; VELÁSQUES, E.I.G; CARRILLO, R.A.M. **Micro Gas Turbine Engine**: A Review. Disponível em: < http://cdn.intechopen.com/pdfs-wm/45114.pdf>. Acesso em: 15 Abr. 2015.

NASCIMENTO, M.A.R; SANTOS, E.C. Biofuel and gas turbine engines, In: BENINI, E. Advances in gas turbine tecnology. Intech, 2011, cap 6, 115-138,

NASCIMENTO, M.A.R., LORA, E.S., CORREA, P.S.P., ANDRADE, R.V., RENDON, M.A., VENTURINI O.J. **Bio-diesel fuel in diesel micro turbine engines: modeling and experimental evaluation**, 2008, Energy, Vol. 33, pp.233–240.

NASCIMENTO, M.A.R; GOMES, E.E.B.; VENTURINI, O.J. Turbinas a gás. In: LORA, E.E.S, **Geração termelétrica**: planejamento, projeto e operação . 1ªed: Interciência, Rio de Janeiro, 2004, cap 6, 321-433.

NAVIA J. A. N. **Preliminary Design Methodology for Multi Fuel Gas Turbine Combustors**. 2010. 152 f. Dissertação (Mestrado em Engenharia Aeronáutica e Mecânica) – Instituto Tecnológico de Aeronáutica, São José dos Campos SP.

ODGERS, J. Gas turbines fuels and their influence on combustion. Abacus Press UK, 1986.

OLIVEIRA, E. **Uma metodologia de projeto de combustores para turbinas agás.** 2013.366 f. Tese (Doutorado em Engenharia Aeronáutica e Mecânica) – Instituto Tecnológico de Aeronáutica, São José dos Campos SP.

OLIVEIRA, R.C.D.; SADA, A.E.; SILVA, R.M. **Teste de operação com etanol de um turbina a gás aeroderivada para geração de energia elétrica.** Rio de Janeiro:Petrobrás, 2010. Relatório RL-9207.00-7501-332-PCY-001.

ORTMAN, J.; LEFEBVRE, A. H. Fuel distibutions from pressure-swir atomizers. 1985, Journal of Propulsion and Power, Vol. 1, number 1 p 11-15.

RADCLIFFE, A., **Fuel injection, high speed aerodynamics and jet propulsion.** Vol.XI, Sect. D, Princeton University Press, Princeton, NJ, 1960.

RASHID, M.S.F.M.; HAMID, A.H.A.; SHENG, O.C.; GHAFFAR, Z.A. Effect of inlet slot number on the spray cone angle and discharge coefficient of swirl atomizer. Procedia Engineering, No 41 pp. 1781-1786, 2012.

REEVES, D. Flame Radiation in an Industrial Gas Turbine Combustion Chamber. National Gas Turbine Establishment, UK, NGTE Memo M285, 1956.

RIBEIRO, A. G. **Projeto de câmara de combustão de uma micro-turbina a gás.** 2003, 44f. Trabalho de Conclusão de Curso (Graduação em Engenharia Aeronáutica) – Instituto Tecnológico de Aeronáutica, São José dos Campos.

RINK, K. K.; LEFEBVRE, A. H. Influence of Fuel Drop Size and Combustor **Operating Conditions on Pollutant Emissions**. International Journal of Turbo and Jet Engines, Vol. 6, No. 2, pp. 113–22, 1989.

RINK, K. K.; LEFEBVRE, A. H. **The Influence of Fuel Composition and Spray Characteristics on Nitric Oxide Formation**. Combustion, Science and Technology, Vol. 68, pp. 1–14, 1989.

RIZK, N. K.; LEFEBVRE, A. H. **Prediction of velocity coefficient and spray cone angle for simplex swirl atomizers**. Proceedings of the 3rd International Conference on Liquid Atomization and Spray Systems, London, p 111C/2/1-16, 1985

SARAVANAMUTTO, H.I.H; ROGERS G.F.C.; COHEN. H; STRAZNICKY, P.V. Gas turbine theory. Essex: England: Pearson, 2009, 6th ed. 590 p.

SCHMELLEMKAMP, Y.; DIELMANN, K. N. **Rapeseed oil in a Capstone C30**". Workshop: Bio-fuelled Micro Gas turbines in Europe. Belgium, 2004.

SCHNEIDER, P. **Incertezas de medição e ajuste de dados.** Medições Térmicas –Apostila ENG03108. Agosto de 2000; Revisão 2002; 2005-1 Porto Alegre - RS – Brasil

SHAKARIYANTS, S.A. Generic methods for aero-engine exhaust emission prediction. 2008. Thesis (Master of Sciences in Aircraft Engineering). Moscow State Aviation Institute

SILVA, H.M., **Procedimento para projeto de câmaras anulares de turbinas a gás.** 2006.74f. Trabalho de Conclusão de Curso (Graduação em Engenharia Aeronáutica) – Instituto Tecnológico de Aeronáutica, São José dos Campos.

SILVA, R.E.P.; LACAVA, P.T. **Preliminary design of a combustion chambre for microturbine based in automotive turbocharger.** Proceedings of 22nd International Congress of Mechanical Engineering, 2013, Ribeirão Preto, Brazil

SILVA R.E.P. Utilização de biodiesel animal em turbinas a gás. 2009. 154 f. Dissertação (Mestrado em Engenharia Mecânica) – Universidade Estadual Paulista, Guaratinguetá.

SILVA, R.E.P., LACAVA, P.T., CARVALHO JR, J.A., **Rover 1S/60 Turboshaft Performance and Emissions Analisys with Biodiesel/Aviation Kerosene Blends**, Proceedings of 11thPan- American Congress of Applied Mechanics, 2010 Foz do Iguaçu Brazil.

SPIEGEL, M.R. Estatística. Ed Makron Books, 3ªed, 1994.

TABACNIKS, M. H. **Conceitos básicos da teoria dos erros,** Instituto de Física da Universidade de São Paulo, São Paulo, 2003.

TSAI, L. **Design and performance of a gas-turbine form an automobile turbocharger.** 2005, 46f .Bachelor Degree Thesis (Bachelor in Mechanical Engineering) – Massachussets Institute of Technology.

TURNS, S. Introdução à Combustão: Conceitos e Aplicações McGraw Hill, 3ª Ed 2013

UNICA - UNIÃO DA INDÚSTRIA DE CANA DE AÇUCAR. **Produção e uso do Etanol combustível no Brasil**: 2007. Disponível em:< http://www.ambiente.sp.gov.br/wp-content/uploads/publicacoes/etanol/producao_etanol_unica.pdf >. Acesso em: 05 Mar. 2015.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, Greenhouse Gas Technology Verification Center: Sponsored Environmental Technology Verification Organization Test and Quality Assurance Plan Honeywell Power Systems Inc. Parallon® 75 kW Turbogenerator . Disponível em: <http://www.epa.gov/etv/pubs/sriusepaghgqap10.pdf>. Acesso em: 15 Abr. 2015.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, **Catalog of CHP Tecnologies:** Technology Characterization: Microturbines, December 2008. . Disponível em: http://www.epa.gov/chp/documents/catalog_chptech_5.pdf>. Acesso em: 15 Abr. 2015.

VAN DEN BRAENBUSSCHE, R.A., **Micro-gas Turbines**: A Short Survey of Design Problems. Micro-Gas Turbines, NATO, p1-1-1-18

VISSER, W.P.J.; SHAKARIYANTS, S.A; OOSTVEEN, M. Development of a 3 kW Microturbine for CHP Applications. J. Eng. Gas Turbines Power, v.133, n. 2, Nov. 2010.

Yule, A.J., Widger, I. R., 1996. Swirl Atomizer Operating at High Water Pressure. International Journal Mechanical Science, 38, no 8-9, pp 981-999.

WANG,X. F., LEFEBVRE, A. H., **Mean Drop Sizes From Pressure Swirl Nozzles**. Journal of Propulsion and Power, Vol. 3, No. 1, 1987, pp. 11–18.doi:10.2514/3.22946.

WENDIG D. **Biofuel in micro gás turbines**, Workshop: Bio-fuelled Micro Gas Turbines in Europe, Brüssel, 24th of September 2004

Apêndice A – Análise Gasturb

🖢 Tu	urbojet SL st	tatic, ISA							
File	Diagrams	Extra Excel	Help						
-		 } _ _	-						
			•						
Sum	mary Cor	npressor St	ations						
									*
	Station	57	τ.	P	WRatd	FN	=	0.10	
	amb		288 15	101 325	nice ou	TSEC	=	72 0144	
	2	0.340	288,15	101,325	0.340	FN/W2	=	307.47	
	3	0.340	347,94	172,252	0.220	Prop Eff	=	0.0000	
	31	0.303	347.94	172.252	-,	eta core	=	0.0806	
	4	0.310	923.15	172,252	0.327			.,	
	41	0,327	896,01	172,252	0,339	WF	=	0,00753	
	49	0,327	841,50	123,911		s NOx	=	0,03079	
	5	0,344	819,13	123,911	0,474	XM8	=	0,5547	
	6	0,344	819,13	123,911		A8	=	0,0028	
	8	0,344	819,13	123,911	0,474	P8/Pamb	=	1,2229	
	P2/P1 =	= 1,0000	P6/P5 = 1	,0000 CD8 =	0,8996	Ang8	=	20,00	
	Efficie	encies:	isentr po	olytr RNI	P/P	W NGV/W2	=	0,05000	
	Compre	essor	0,7870 0,	8023 1,000	1,700	WCL/W2	=	0,05000	
	Burner	-	1,0000		1,000	Loading 4	8=	100,00	
	Turbin	ie	0,7700 0,	7626 0,254	1,390	e45 th	=	0,75664	
	Spool	mech	1,0000 No	ominal Spd	138576	WBld/W2	=	0,01000	
	Bleed A	Air: P	Bld = 172,	25 TBld =	347,9	PWX	=	0,00	
						ZWBld	=	0,00000	
	hum [%]	war	0 FH	7 Fuel					
	0,0	0,0000	0 26,170) Generic					
									*
Title:									

Simulação Gasturb 48 krpm

🖢 Turbojet SL static, ISA							
File Diagrams Extra Excel	Help						
Summary Compressor St	tations						
							*
Station W	Т	P	WRstd	FN	=	0,17	
amb	288,15 101	,325		TSFC	=	59,4312	
2 0,480	288,15 101	,325	0,480	FN/W2	=	348,45	
3 0,480	387,10 233	,047	0,242	Prop Eff	=	0,0000	
31 0,427	387,10 233	,047		eta core	=	0,1108	
4 0,437	923,15 233	,047	0,340				
41 0,461	897,70 233	,047	0,354	WF	=	0,00994	
49 0,461	807,11 132	,993		s NOx	=	0,04250	
5 0,485	787,74 132	,993	0,611	XM8	=	0,6467	
6 0,485	787,74 132	,993		A8	=	0,0032	
8 0,485	787,74 132	,993	0,611	P8/Pamb	=	1,3125	
P2/P1 = 1,0000	P6/P5 = 1,0000	CD8 =	0,9127	Ang8	=	20,00	
Efficiencies:	isentr polytr	RNI	P/P	W_NGV/W2	=	0,05000	
Compressor	0,7800 0,8039	1,000	2,300	WCL/W2	=	0,05000	
Burner	1,0000		1,000	Loading	% =	100,00	
Turbine	0,7700 0,7573	0,342	1,752	e45 th	=	0,75493	
Spool mech	1,0000 Nomina	l Spd	116629	WBld/W2	=	0,01000	
Bleed Air: P	Bld = 233,05	TBld =	387,1	PWX	=	0,00	
				ZWBld	=	0,00000	
hum [%] war	:0 FHV	Fuel					
0,0 0,0000	0 26,170	Generic					
L							T
Title:							

Simulação Gasturb 64 krpm

🖢 Turbojet SL static, ISA	🖢 Turbojet SL static, ISA 📃 📼 💌							
<u>File Diagrams Extra Excel</u>	<u>File D</u> iagrams Extra Excel Help							
	-							
Summary Compressor St	Summary Compressor Stations							
Station W	т	P	WRstd	FN	=	0,20		
amb	288,15	101,325		TSFC	=	55,4925		
2 0,580	288,15	101,325	0,580	FN/W2	=	342,61		
3 0,580	433,09	314,107	0,229	Prop Eff	=	0,0000		
31 0,516	433,09	314,107		eta core	=	0,1169		
4 0,527	923,15	314,107	0,304					
41 0,556	899,71	314,107	0,317	WF	=	0,01103		
49 0,556	765,28	133,717		s NOx	=	0,06067		
5 0,585	749,78	133,717	0,715	XM8	=	0,6522		
6 0,585	749,78	133,717		A8	=	0,0037		
8 0,585	749,78	133,717	0,715	P8/Pamb	=	1,3197		
P2/P1 = 1,0000	P6/P5 = 1,0	0000 CD8 =	0,9137	Ang8	=	20,00		
Efficiencies:	isentr pol	.ytr RNI	P/P	W_NGV/W2	=	0,05000		
Compressor	0,7540 0,7	891 1,000	3,100	WCL/W2	=	0,05000		
Burner	1,0000		1,000	Loading '	8=	100,00		
Turbine	0,7700 0,7	501 0,460	2,349	e45 th	=	0,75269		
Spool mech	1,0000 Nom	uinal Spd	106100	WBld/W2	=	0,01000		
Bleed Air: F	Bld = 314,1	1 TBld =	433,1	PWX	=	0,00		
				ZWBld	=	0,00000		
	-							
hum [%] war	O FHV	Fuel						
0,0 0,0000	26,170	Generic						
							-	
L				1				
Title:								

Simulação Gasturb 77 krpm

	Rota	ação do Ei	xo - [rpm]		
	Pan	nb = 965,4	- kPa - Tar	mb = 297, 1	15 K
vazão indicada	8,4	9,8	11,2	12,6	14
1	56925	63079	67944	72141	75494
2	55918	63142	67937	72141	75494
3	55918	63142	67937	72141	75494
4	55918	63142	67937	72141	75494
5	55918	63142	67937	71457	75494
6	55918	63142	67937	71758	75494
7	55918	63086	67937	72126	75494
8	55918	63086	67937	72126	75494
9	55918	63086	67937	72126	75494
10	55918	63086	67918	72126	75494
11	55918	63086	67918	72126	75494
12	55918	63086	67918	72126	75494
13	55918	63086	67918	72126	75494
14	55918	63086	67918	72126	75494
15	55918	63086	67918	72126	75494
16	55918	63086	67918	72126	75600
17	56435	63086	67918	72126	75536
18	56435	63086	67918	72126	75536
19	56435	63086	67918	72126	75288
20	56435	63086	67918	72126	75546
21	56379	63086	67918	72126	75546
22	56379	63086	67918	72110	75498
23	56223	63086	67918	72110	75498
24	56223	63043	67975	72110	75498
25	56223	63002	67975	72110	75498
26	56223	63002	67975	72162	75498
27	56223	63002	67975	72162	75498
28	56223	62954	67975	71202	75498
29	56223	62893	67975		75498
30	56223	62958	67975		75498
média	56132,6	63070,2	67937,2	72058,4	75498,1
desvio padrão	254,022	59,3883	22,9011	220,546	46,327

Apêndice B – Dados Aquisitados

Rotação do eixo do gerador de gases

		T2 - [H	K]		
	Pan	nb = 965,4	kPa - Tar	nb = 297, 1	15 K
vazão indicada	8,4	9,8	11,2	12,6	14
1	393,15	413,15	436,15	458,15	476,15
2	393,15	413,15	436,15	457,15	477,15
3	393,15	413,15	436,15	457,15	476,15
4	393,15	414,15	436,15	457,15	476,15
5	393,15	414,15	436,15	457,15	476,15
6	393,15	414,15	436,15	457,15	476,15
7	393,15	414,15	436,15	458,15	475,15
8	393,15	414,15	436,15	458,15	475,15
9	393,15	414,15	437,15	458,15	475,15
10	393,15	414,15	437,15	457,15	475,15
11	393,15	414,15	437,15	457,15	475,15
12	393,15	415,15	436,15	457,15	474,15
13	393,15	414,15	436,15	457,15	475,15
14	393,15	414,15	436,15	457,15	475,15
15	393,15	414,15	436,15	457,15	475,15
16	393,15	414,15	436,15	457,15	476,15
17	393,15	414,15	436,15	457,15	475,15
18	393,15	415,15	436,15	457,15	475,15
19	393,15	414,15	436,15	457,15	474,15
20	393,15	415,15	436,15	457,15	474,15
21	393,15	415,15	436,15	457,15	474,15
22	393,15	415,15	437,15	457,15	474,15
23	393,15	415,15	437,15	456,15	474,15
24	393,15	415,15	436,15	457,15	475,15
25	393,15	415,15	437,15	457,15	474,15
26	393,15	415,15	437,15	457,15	475,15
27	393,15	415,15	436,15	457,15	475,15
28	393,15	415,15	437,15	457,15	475,15
29	392,15	415,15	437,15	457,15	475,15
30	392,15	415,15	437,15	457,15	475,15
média	393,083	414,483	436,483	457,25	475,183
desv. padrão	0,25371	0,66089	0,47946	0,40258	0,76489

Temperatura na entrada da câmara de combustão

	T3 - [K]						
	Pan	ıb = 965,4	kPa - Tan	hb = 297, 1	5 K		
vazão indicada	8,4	9,8	11,2	12,6	14		
1	599,00	617,00	600,00	629,00	676,00		
2	599,00	616,00	600,00	630,00	676,00		
3	598,00	616,00	601,00	628,00	675,00		
4	599,00	616,00	601,00	631,00	674,00		
5	599,00	617,00	600,00	630,00	673,00		
6	598,00	616,00	600,00	631,00	674,00		
7	598,00	616,00	600,00	632,00	674,00		
8	598,00	615,00	600,00	632,00	676,00		
9	597,00	615,00	600,00	632,00	677,00		
10	596,00	614,00	601,00	631,00	677,00		
11	597,00	615,00	601,00	629,00	676,00		
12	596,00	616,00	599,00	631,00	675,00		
13	596,00	616,00	599,00	631,00	675,00		
14	598,00	616,00	598,00	632,00	675,00		
15	596,00	615,00	598,00	633,00	675,00		
16	596,00	615,00	599,00	632,00	675,00		
17	595,00	616,00	598,00	632,00	676,00		
18	595,00	615,00	598,00	630,00	676,00		
19	595,00	616,00	598,00	629,00	677,00		
20	596,00	615,00	597,00	629,00	676,00		
21	596,00	615,00	598,00	628,00	676,00		
22	596,00	614,00	598,00	631,00	677,00		
23	596,00	615,00	599,00	631,00	677,00		
24	596,00	615,00	600,00	632,00	676,00		
25	595,00	613,00	601,00	633,00	676,00		
26	595,00	613,00	600,00	634,00	676,00		
27	595,00	612,00	599,00	634,00	675,00		
28	594,00	612,00	600,00	635,00	674,00		
29	595,00	612,00	600,00	634,00	673,00		
30	596,00	613,00	599,00	633,00	674,00		
média	596,50	614,90	599,40	631,30	675,40		
desv. padrão	1,46	1,42	1,13	1,82	1,16		

Temperatura na saída da câmara de combustão

		T4 - [I	K]		
	Pa	mb = 965	4 kPa - Ta	amb = 297	,15
vazão indicada	8,4	9,8	11,2	12,6	14
1	805,15	810,15	832,15	862,15	886,15
2	805,15	810,15	833,15	862,15	886,15
3	805,15	810,15	833,15	862,15	886,15
4	806,15	810,15	834,15	862,15	885,15
5	806,15	811,15	833,15	861,15	885,15
6	805,15	810,15	833,15	861,15	884,15
7	805,15	810,15	833,15	861,15	885,15
8	805,15	810,15	833,15	861,15	885,15
9	805,15	811,15	832,15	861,15	885,15
10	805,15	811,15	832,15	861,15	886,15
11	805,15	810,15	833,15	861,15	886,15
12	806,15	810,15	833,15	862,15	885,15
13	806,15	810,15	834,15	861,15	886,15
14	806,15	810,15	833,15	862,15	886,15
15	806,15	809,15	834,15	861,15	885,15
16	806,15	810,15	835,15	861,15	886,15
17	806,15	810,15	834,15	861,15	885,15
18	805,15	811,15	833,15	861,15	886,15
19	805,15	810,15	833,15	861,15	884,15
20	805,15	810,15	832,15	862,15	883,15
21	805,15	810,15	833,15	861,15	885,15
22	805,15	810,15	833,15	862,15	885,15
23	805,15	810,15	833,15	862,15	885,15
24	805,15	810,15	833,15	862,15	885,15
25	806,15	810,15	833,15	862,15	885,15
26	806,15	811,15	834,15	863,15	886,15
27	806,15	810,15	834,15	862,15	884,15
28	806,15	810,15	834,15	861,15	884,15
29	807,15	810,15	833,15	861,15	885,15
30	806,15	809,15	833,15	862,15	884,15
média	805,65	810,25	833,317	861,65	885,25
desv. padrão	0,57235	0,48066	0,69893	0,57235	0,80301

Temperatura na saída da turbina

	H	P2 estática	- [atm]		
	Pan	nb = 965,4	· kPa - Tar	mb = 297, 1	15 K
vazão indicada	8,4	9,8	11,2	12,6	14
1	1,7645	1,9698	2,2027	2,4342	2,6080
2	1,7633	1,9773	2,2051	2,4396	2,6097
3	1,7604	1,9830	2,2028	2,4354	2,6164
4	1,7596	1,9836	2,2040	2,4381	2,6148
5	1,7604	1,9839	2,2039	2,4342	2,6198
6	1,7622	1,9854	2,2061	2,4413	2,6219
7	1,7578	1,9835	2,2060	2,4324	2,6195
8	1,7604	1,9848	2,2004	2,4353	2,6208
9	1,7608	1,9877	2,1999	2,438	2,6198
10	1,7581	1,9915	2,2069	2,4408	2,6201
11	1,7590	1,9889	2,2033	2,4363	2,6228
12	1,7595	1,9889	2,2021	2,4336	2,6198
13	1,7608	1,9864	2,1995	2,4402	2,6259
14	1,7580	1,9879	2,2024	2,4366	2,6169
15	1,7565	1,9907	2,2058	2,4291	2,6173
16	1,7559	1,9901	2,2060	2,4306	2,6223
17	1,7611	1,9868	2,2054	2,4342	2,6134
18	1,7492	1,9927	2,2028	2,4368	2,6169
19	1,7551	1,9943	2,1984	2,4318	2,6235
20	1,7547	1,9879	2,2067	2,4396	2,6208
21	1,7529	1,9943	2,1983	2,4319	2,6235
22	1,7512	1,9906	2,1942	2,4389	2,6184
23	1,7497	1,9861	2,2006	2,4386	2,6187
24	1,7480	1,9886	2,2037	2,4309	2,6246
25	1,7507	1,9927	2,1992	2,4318	2,6137
26	1,7482	1,9916	2,1999	2,4312	2,6219
27	1,7477	1,9861	2,2039	2,4268	2,6214
28	1,7497	1,9921	2,1980	2,4277	2,6172
29	1,7518	1,9797	2,2037	2,4267	2,6246
30	1,7495	1,9882	2,1993	2,4357	2,6222
média	1,75589	1,98717	2,20237	2,43461	2,61922
desv. padrão	0,00519	0,00522	0,00314	0,00419	0,00425

Pressão estática na entrada da câmara de combustão

	I	P3 estática	- [atm]		
	Pan	nb = 965,4	- kPa - Tar	mb = 297,1	15 K
vazão indicada	8,4	9,8	11,2	12,6	14
1	1,6949	1,8994	2,1213	2,3106	2,4749
2	1,6978	1,9042	2,1161	2,3113	2,4729
3	1,6990	1,9062	2,1108	2,3139	2,4732
4	1,6948	1,9044	2,1165	2,3104	2,4797
5	1,6967	1,9065	2,1162	2,3092	2,4783
6	1,6955	1,9116	2,1225	2,3107	2,4773
7	1,6930	1,9124	2,1164	2,3026	2,4815
8	1,6983	1,9145	2,1123	2,3087	2,4786
9	1,6949	1,9155	2,1189	2,3041	2,4812
10	1,6957	1,9169	2,1146	2,319	2,4814
11	1,6966	1,9205	2,1171	2,3158	2,4844
12	1,6909	1,9169	2,1135	2,3086	2,4820
13	1,6946	1,9176	2,1152	2,3116	2,4836
14	1,6930	1,9161	2,1132	2,3104	2,4789
15	1,6961	1,9223	2,1153	2,3065	2,4749
16	1,6924	1,9181	2,1207	2,3125	2,4782
17	1,6934	1,9170	2,1168	2,3092	2,4735
18	1,6933	1,9196	2,1179	2,3103	2,4829
19	1,6918	1,9143	2,1158	2,3101	2,4768
20	1,6892	1,9161	2,1170	2,3078	2,4777
21	1,6881	1,9205	2,1152	2,3127	2,4829
22	1,6875	1,9140	2,1099	2,3158	2,4762
23	1,6907	1,9158	2,1147	2,3103	2,4722
24	1,6887	1,9152	2,1156	2,3121	2,4844
25	1,6844	1,9142	2,1141	2,317	2,4783
26	1,6820	1,9198	2,1168	2,3093	2,4783
27	1,6839	1,9167	2,1102	2,3083	2,4767
28	1,6872	1,9142	2,1111	2,3027	2,4712
29	1,6830	1,9044	2,1091	2,3021	2,4800
30	1,6881	1,9146	2,1111	2,3095	2,4814
média	1,69185	1,91398	2,1152	2,3101	2,47845
desv. padrão	0,00471	0,00562	0,00332	0,00401	0,00372

Pressão estática na saída da câmara de combustão

		O2 [%]	b.s.		
		Pa = 965,	4 kPa - Ta	1 = 297, 15	
vazão indicada	8,4	9,8	11,2	12,6	14
1	17,8678	17,9527	17,8685	17,5993	17,3557
2	17,8807	17,9525	17,8692	17,6005	17,3555
3	17,882	17,9494	17,8813	17,5999	17,3572
4	17,894	17,9591	17,8818	17,5994	17,3578
5	17,9041	17,9682	17,8942	17,6034	17,3461
6	17,9049	17,9708	17,8939	17,6036	17,3566
7	17,9163	17,9673	17,8923	17,6163	17,3681
8	17,9164	17,972	17,8927	17,6149	17,3704
9	17,9157	17,9723	17,8937	17,6243	17,3699
10	17,9174	17,9755	17,893	17,6257	17,3674
11	17,9168	17,9857	17,8934	17,6348	17,3677
12	17,9168	17,9894	17,891	17,6357	17,371
13	17,9158	17,9905	17,893	17,6367	17,3697
14	17,9197	17,9993	17,8926	17,6357	17,3692
15	17,9295	17,9984	17,9048	17,6387	17,3689
16	17,9263	18,0002	17,9049	17,6377	17,3551
17	17,9267	17,9999	17,8938	17,6378	17,3686
18	17,9413	17,9984	17,8944	17,6491	17,3712
19	17,9402	18,009	17,8945	17,6482	17,3717
20	17,9379	17,9989	17,8943	17,6479	17,3792
21	17,9383	17,9993	17,8942	17,6612	17,3783
22	17,9427	18,0121	17,9031	17,6615	17,3855
23	17,9538	18,0018	17,9043	17,6593	17,3836
24	17,9507	17,9958	17,9052	17,6603	17,3812
25	17,9609	17,9975		17,6621	17,3681
26	17,9624	18,0086		17,6625	17,3831
27	17,9633	18,0198		17,6587	
28	17,956	18,0182		17,6595	
29	17,9249	18,0188		17,6719	
30		18,0089		17,6714	
média	17,9249	17,9897	17,8927	17,6373	17,3683
desv. padrão	0,02479	0,02078	0,00956	0,02369	0,01006

Fração molar de oxigênio em base seca nos gases de exaustão

		CO2 [%]] b.s.		
	Pa	mb = 965,	4 kPa - Ta	amb = 297	7,15
vazão indicada	8,4	9,8	11,2	12,6	14
1	2,69631	2,69697	2,81117	3,02783	3,21108
2	2,69232	2,70477	2,81136	3,02453	3,21508
3	2,68936	2,70401	2,81133	3,02804	3,21894
4	2,68145	2,6965	2,80335	3,02779	3,22663
5	2,68144	2,69316	2,79972	3,02043	3,21872
6	2,67719	2,68978	2,79593	3,01656	3,21153
7	2,67796	2,69321	2,80371	3,01299	3,19903
8	2,67439	2,68974	2,80722	3,0093	3,20658
9	2,68157	2,69324	2,80713	3,00894	3,21151
10	2,68559	2,68961	2,80372	3,00895	3,20811
11	2,68179	2,68939	2,80359	3,00194	3,21127
12	2,68207	2,68523	2,80036	3,00213	3,2113
13	2,68152	2,68183	2,80383	3,00531	3,21109
14	2,67835	2,68566	2,80299	3,00179	3,21435
15	2,67751	2,68207	2,79559	3,01298	3,21406
16	2,6779	2,67809	2,79246	3,00525	3,21442
17	2,67796	2,68594	2,80423	3,00572	3,21078
18	2,67801	2,68221	2,81157	3,00518	3,20708
19	2,67343	2,68231	2,81196	3,00123	3,20334
20	2,67735	2,68244	2,80783	2,99751	3,20676
21	2,67758	2,68201	2,80743	2,99365	3,20045
22	2,67368	2,68159	2,79952	3,0015	3,20404
23	2,67431	2,68586	2,80014	2,9981	3,20745
24	2,66685	2,68553	2,79641	2,99433	3,2114
25	2,67038	2,67769	2,81897	2,99427	3,21105
26	2,67414	2,67381		2,99795	3,20733
27	2,68505	2,67457		2,99415	
28	2,67753	2,67457		2,99716	
29		2,68123		2,99037	
30		2,6815		2,99034	
média	2,67939	2,68615	2,80446	3,00587	3,21051
desv. padrão	0,00629	0,0079	0,00626	0,01122	0,00586

Fração molar de dióxido de carbono em base seca nos gases de exaustão

CO [ppm] b.s.							
Pamb = 965,4 kPa - Tamb = 297,15							
vazão indicada	8,4	9,8	11,2	12,6	14		
1	641,929	529,92	380,564	285,281	232,044		
2	640,329	532,575	388,541	285,294	233,575		
3	641,601	526,057	386,684	283,01	236,73		
4	639,159	516,878	384,856	283,018	239,363		
5	635,472	516,593	385,55	281,498	238,166		
6	640,051	514,753	385,127	279,154	237,78		
7	647,371	516,178	386,283	276,5	234,665		
8	641,877	515,869	376,175	279,191	237,808		
9	643,827	517,012	368,433	277,639	235,144		
10	644,551	521,998	378,468	279,518	233,608		
11	645,267	522,758	376,895	277,392	243,464		
12	650,25	516,58	381,04	277,343	237,793		
13	659,295	513,539	381,382	278,81	237,413		
14	661,855	514,308	375,661	279,577	238,215		
15	665,854	516,906	379,126	278,477	241,635		
16	665,056	515,382	377,529	281,809	236,252		
17	658,969	515,348	384,965	276,939	232,49		
18	667,61	519,274	380,955	280,768	233,262		
19	665,184	521,198	384,084	277,696	229,04		
20	667,73	518,493	388,207	276,13	231,786		
21	668,128	520,798	386,7	274,601	229,451		
22	670,349	524,156	382,914	277,895	232,872		
23	666,567	530,314	378,783	279,885	231,955		
24	674,575	529,034	371,497	276,52	232,465		
25	676,867	524,513	381,004	278,794	234,316		
26	685,465	524,144		281,463	234,747		
27	682,905	519,264		279,139			
28	677,092	525,365		280,442			
29		527,166		281,197			
30		520,474		279,496			
média	658,042	520,895	381,257	279,483	235,232		
desv. padrão	14,9898	5,37315	5,10504	2,56594	3,50438		

Fração molar de monóxido de carbono em base seca nos gases de exaustão

		CH4 [ppm] b.s.						
	Pamb = 965,4 kPa - Tamb = 297,15							
vazão indicada	8,4	9,8	11,2	12,6	14			
1	101,095	97,3526	73,3355	47,0295	28,9917			
2	100,384	97,1081	73,4358	46,2011	28,0049			
3	100,279	97,0154	74,1148	46,2724	27,9296			
4	100,408	96,7947	73,1513	46,8059	27,5236			
5	99,9149	96,4475	72,7916	46,1381	27,5481			
6	99,6019	96,7265	72,1543	45,2526	27,4023			
7	99,3168	96,2303	72,4898	44,7503	27,0199			
8	100,837	96,6077	72,1404	44,2374	26,7881			
9	101,62	97,0492	72,167	44,3102	26,6821			
10	101,28	95,8888	72,1811	45,0681	26,4505			
11	100,484	95,4915	69,8366	44,4685	26,505			
12	101,201	95,9044	69,4495	43,2298	26,4081			
13	100,919	95,9231	69,8642	43,1871	26,1051			
14	100,804	97,0724	69,8142	42,8798	25,865			
15	100,753	97,0569	69,4447	42,9398	26,097			
16	101,076	96,4167	69,3444	42,6708	25,5242			
17	101,296	95,8687	68,9761	42,7055	25,4716			
18	102,778	95,4463	69,044	42,1345	25,575			
19	102,697	95,4791	67,6695	41,6183	25,602			
20	102,928	95,1734	68,1099	41,402	24,7876			
21	102,119	94,1478	67,2079	41,414	24,3163			
22	102,119	93,7125	67,1413	40,7808	23,9685			
23	102,176	93,4771	67,9462	40,5923	24,4159			
24	103,698	93,9672	66,9194	40,4558	24,0093			
25	103,782	93,6349	67,0514	40,0155	23,7502			
26	103,929	93,1328	67,3207	39,5363	23,8048			
27	104,49	93,0194	67,5697	39,0928	23,0039			
28	104,658	93,0479	67,0799	38,5285	22,9905			
29	105,137	92,6276	65,5817	38,4265	23,1066			
30	104,82	93,0561	65,94	38,5038	22,8446			
média	101,887	95,3626	69,6424	42,6883	25,6164			
desv. padrão	1,65197	1,54696	2,5373	2,61921	1,69933			

Fração molar de hidrocarbonetos não queimados em base seca nos gases de exaustão

Nox [ppm] b.s.							
	Pamb = 965,4 kPa - Tamb = 297,15						
vazão indicada	8,4	9,8	11,2	12,6	14		
1	12,2118	13,084	15,3376	17,3099	19,0546		
2	12,2883	13,1635	15,066	17,5722	19,0198		
3	12,2123	13,3934	15,0687	17,2392	19,024		
4	12,2822	13,2802	15,0267	17,2324	19,0583		
5	12,2526	13,1635	14,9474	17,2765	19,0556		
6	12,29	13,1656	14,9783	17,2771	18,9836		
7	12,1814	13,2034	14,9419	17,2398	18,9462		
8	12,289	13,2735	14,9489	17,2392	18,9862		
9	12,2872	13,2364	14,9994	17,1171	19,0627		
10	12,2551	13,2385	14,9941	17,1138	19,0604		
11	12,3703	13,2876	14,987	17,1605	19,0213		
12	12,2912	13,2065	14,9965	17,3594	19,06		
13	12,3638	13,3528	15,071	17,1955	18,9881		
14	12,252	13,1636	15,0335	17,1659	19,1671		
15	12,2469	13,2385	14,9926	17,1553	19,099		
16	12,2509	13,2039	15,0278	17,1913	19,1446		
17	12,2571	13,2426	14,9919	17,161	19,329		
18	12,4063	13,28	15,0661	17,197	18,9469		
19	12,2898	13,2816	15,026	17,1987	19,0223		
20	12,2142	13,3582	15,0646	17,1979	18,9871		
21	12,2191	13,3174	15,1062	17,0393	19,0662		
22	12,2157	13,2734	14,9416	17,0828	19,2548		
23	12,215	13,3213	15,027	17,0849	19,0188		
24	12,0995	13,3216	15,1363	17,0441	19,1026		
25	12,0966	13,3199	16,051	17,1208	19,0644		
26	12,1387	13,311		17,1171	19,0584		
27	12,2018	13,1997		17,1137			
28	12,138	13,1661		16,9594			
29		13,2045		16,7404			
30		13,2827		16,7791			
média	12,2435	13,2512	15,0731	17,156	19,0608		
desv. padrão	0,07371	0,07143	0,21932	0,15538	0,08658		

Fração molar de óxidos de nitrogênio em base seca nos gases de exaustão

Apêndice C – Distibuição do Tamanho de Gotas

Apêndice D – Ângulos de Abertura Medidos

Ângulo de abertura do spray ($\Delta P_{inj} = 2 \text{ kgf/cm}^2$)

Ângulo de abertura do spray ($\Delta P_{inj}=3~kgf/cm^2)$

Ângulo de abertura do spray ($\Delta P_{inj}=4~kgf/cm^2)$

Ângulo de abertura do spray ($\Delta P_{inj} = 5 \text{ kgf/cm}^2$)

Ângulo de abertura do spray ($\Delta P_{inj}=6~kgf/cm^2)$

Ângulo de abertura do spray ($\Delta P_{inj} = 7 \text{ kgf/cm}^2$)

Anexo A – Mapa de Desempenho do Compressor

F	OLHA DE REGISTRO	DO DOCUMENTO	
^{1.} CLASSIFICAÇÃO/TIPO	^{2.} DATA	^{3.} REGISTRO N°	^{4.} N° DE PÁGINAS
TD	20 de agosto de 2015	DCTA/ITA/TD-023/2015	180
^{5.} TÍTULO E SUBTÍTULO:			
Projeto, construção e ensaio de	uma câmara de combust	ão de microturbina a gás ope	erando com etanol.
AUTOR:			
Ramón Eduardo Pereira Silv 7 INSTITUIÇÃO(ÕFS)/ÓRC	a GÃO(S) INTERNO(S)/DI	VISÃO(ÕFS):	
		(0L5).	
Instituto Tecnológico de Aeron	áutica – ITA		
• PALAVRAS-CHAVE SUGE	RIDAS PELO AUTOR:		_
Turbinas a gás, Etanol, Câmara O PALAVRAS CHAVE RESU	u de combustão, Metodolo	ogia de projeto, Análise de p	oluentes.
Turbinas a sás: Câmaras da as	nhustão. Deluisão non co	içad. 2001 Atomização: Enconhori	o mocânico
^{10.} APRESENTAÇÃO:	nibustao; Polulção por ga	x Nacional	Internacional
ITA, São José dos Campos Aeronáutica e Mecânica. Áre Teixeira Lacava. Defesa em 08 ^{11.} RESUMO:	. Curso de Doutorado. a de Aerodinâmica, Pro /07/2015. Publicada em 2	Programa de Pós-Gradu opulsão e Energia. Orienta 2015.	ação em Engenharia dor: Prof. Dr. Pedro
Neste trabalho foram desenvolv	vidos os projetos de uma	câmara de combustão e de u	um atomizador do tipo
pressure-swirl que permitirat	m a operação de uma	microturbina a gás, util	izando etanol como
combustível. O combustor e o	injetor foram projetados	s para as características físio	co-químicas do etanol
anidro. A influência da presend	ca de água no combustív	el foi ser analisada nos ensa	ios. Foram realizados
ensaios de desempenho e emi	ssões de gases na micro	oturbina. A determinação do	Diâmetro Médio de
Sauter (SMD) e do ângulo de	e abertura do do spravi	também foi realizada. Na a	nálise dos resultados
investigou-se o comportamento	a das relações ar/combust	ível a emissão de poluentes	e sua correlação com
atomização do computival o	com a aficiância da con	abustão. A operação de mi	eroturbina ocorrou de
monoire estéval velidende tent	e on projeto do combusto	auanto o do atomizador. A	rezão do oquivalância
manena estaver, vandando tant		quanto o do atomizador. A	
aumentou com o aumento da ro	otação do eixo. A pressac	de injeção aumentou com o	o incremento de vazac
provocando a diminuição do S	SMD. Fato esse que pror	noveu decréscimo nas emis	sões de monóxido de
carbono (CO) e óxidos de nitro	gênio (NO _x) demonstran	do melhoria na eficiência de	combustão.
^{12.} GRAU DE SIGILO:			
	(X) OSTENSIVO ()	RESERVADO ()	SECRETO