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“[...] a simplicidade permite obter custos mais baixos,
maior acessibilidade e menor consumo de energia,
entre outros. Assim, surge Simple is beautiful.”

(Kobiyama; Mota; Corseuil, 2008)!.



RESUMO

MAACHAR, A. F. Producao de biochar a partir de residuo agroindustrial da Macauba
(Acrocomia aculeata), caracterizacio e avaliacio de sua capacidade de adsor¢do na
remocio de contaminantes. 2025. Tese (Doutorado em Ciéncia e Tecnologia Ambiental) —

Universidade Federal da Grande Dourados (UFGD), Dourados, MS, 2025.

Este trabalho relata a produgdo de biochar a diferentes temperaturas, por procedimento
simplificado e de baixo custo, com vistas a obter um adsorvente capaz de remover poluentes
em solugdes aquosas, sendo testados o Azul de Metileno (MB) e o Contaminante Emergente
(CE) Bisfenol A (BPA). Foram produzidos biochars a partir da carbonizagdo de biomassa as
temperaturas de 300 °C (BC-300), 400 °C (BC-400), 500 °C (BC-500), 600 °C (BC-600),
700 °C (BC-700) e 800 °C (BC-800), por 2 h, em forno elétrico, tipo mufla, sem purga e em
condi¢cdes limitadas de oxigénio (atmosfera ndo inerte), sem pré-tratamento nem mesmo pos-
tratamento ou ativacdo. Foi utilizado como precursor o endocarpo (EDP) da Macatba
(Acrocomia aculeata), que ¢ um material lignocelulosico com caracteristicas fisicas e quimicas
favoraveis a carbonizacdo, além de ser acessivel e de baixo custo. As mudangas nas
propriedades fisicas e quimicas da biomassa precursora e¢ das diferencas entre os proprios
biochars, foram evidenciadas pelas andlises e técnicas de caracterizacao de TG/DTG, MEV,
FT-IR e DRX, comprovando assim a influéncia da temperatura na transformagao da biomassa.
Os resultados obtidos de rendimento gravimétrico (nG) e das capacidades de adsor¢do de MB
(gqe-mB) € BPA (qe-Bra) foram submetidos & Andlise de Variancia de 2 fatores (ANOVA-2),
seguido do teste de Tukey (p<0,05). O nG, produzido nessas condi¢des ficou na faixa de 11,05%
a 35,98% e houve influéncia significativa da interacao dos fatores avaliados (Temperatura de
Carbonizacdo X Condicdo de Atmosfera), cujo os niveis foram 6 (seis) temperaturas entre
300~800°C e 2 (duas) condigoes Com Tampa (CT) e Sem Tampa (ST); o método CT
apresentou melhor rendimento em todas as temperaturas testadas. Todos os biochars produzidos
foram capazes de remover MB e BPA, com melhores resultados na remo¢ao do MB — para o
qual ge-ms variou entre 5,37 e 35,13 mg.g”!' enquanto qe-spa entre 0,92 e 23,17 mg.g’!; foi
significativa a interacdo dos fatores avaliados (Tipo de Adsorvente X Concentracdo do
Adsorvente); foram 7 (sete) niveis para os tipos de adsorventes (EDP e os biochars) e 4 (quatro)
niveis para concentragdes dos adsorventes (entre 0,25 e 1,00 g.L ") para ensaios do MB, j4 para
os ensaios com BPA foram 5 (cinco) niveis - entre 0,50 e 5,00 g.L"'; para todos os adsorvatos

testados, BC-700 e BC-800 foram superiores aos demais. Complementarmente, BC-700 e BC-



800 foram submetidos a caracterizacao textural por adsor¢do de N> e apresentaram quantidade
méxima adsorvida de 81,89 cm’.g! e 69,34 cm’.g”!, respectivamente; BC-700 também foi
superior em termos de area superficial especifica BET com 189,72 m%.g"' e BC-800 com
137,51 m>.g!. As isotermas obtidas para ambos materiais apresentaram formas e ciclos de
histerese caracteristicos de materiais mesoporosos com uma fragao significativa de microporos.
Contudo, observou-se que com este método de baixo custo e simplificado de carbonizagdo do
EDP da Macauba ¢ possivel produzir, com rendimento equivalente a outros métodos,
adsorventes capazes de remover MB ¢ BPA em solucdo aquosa; destacando-se como mais
eficientes os carbonizados as mais altas temperaturas, 700 °C e 800 °C, sendo BC-700

ligeiramente melhor.

Palavras-chave: biomassa; carbonizagdo; pirdlise; biocarvao; Contaminantes

Emergentes; BPA.



ABSTRACT

MAACHAR, A. F. Production of biochar from Macauba (Acrocomia aculeata) agro-
industrial residue: characterization and evaluation of its adsorption capacity for

contaminant removal. 2025. Thesis (Doctorate in Environmental Science and Technology) —

Federal University of Grande Dourados (UFGD), Dourados, MS, 2025.

This work reports the production of biochar at different temperatures, using a simplified and
low-cost procedure, aiming to obtain an adsorbent capable of removing pollutants in aqueous
solutions; Methylene Blue (MB) and the Emerging Contaminant (EC) Bisphenol A (BPA) were
tested. Biochars were produced from the carbonization of biomass at temperatures of 300 °C
(BC-300), 400 °C (BC-400), 500 °C (BC-500), 600 °C (BC-600), 700 °C (BC-700), and 800 °C
(BC-800), for 2 hours, in a standard electric muffle furnace, without purge and under limited
oxygen conditions (non-inert atmosphere), with no pre-treatment, post-treatment or activation.
The precursor used was Macatba (Acrocomia aculeata) endocarp (EDP), a lignocellulosic
material with physical and chemical characteristics favorable to carbonization, besides being
accessible and low-cost. The changes in the physical and chemical properties of the precursor
biomass and the differences between the biochars themselves were evidenced by TG/DTG,
SEM, FT-IR, and XRD analysis and characterization techniques, thus confirming the influence
of temperature on the biomass transformation. The results obtained for gravimetric yield (ng)
and the adsorption capacities of MB (qe-mB) and BPA (qge-Bra) were submitted to two-factor
Analysis of Variance (ANOV A-2), followed by the Tukey test (p<0.05). The ng produced under
these conditions ranged from 11.05% to 35.98%, and there was a significant influence of the
interaction between the evaluated factors (Carbonization Temperature x Atmosphere
Condition), whose levels were 6 (six) temperatures between 300 ~ 800 °C and 2 (two)
conditions With Lid (CT) and Without Lid (ST); the CT method presented better yields at all
tested temperatures. All biochars produced were able to remove MB and BPA, with better
results for MB removal — for which ge-ms ranged from 5.37 to 35.13 mg.g"! and qe.spa from
0.92 to 23.17 mg.g’!; a significant interaction of the evaluated factors (Type of Adsorbent x
Adsorbent Concentration) was observed; there were 7 (seven) levels for the types of adsorbents
(EDP and the biochars) and 4 (four) levels for adsorbent concentrations (between 0.25 and

1.00 g.L'!) for the MB trials, while for BPA trials there were 5 (five) levels — between 0.50 and



5.00 g.L'!; for all tested adsorvates, BC-700 and BC-800 were superior to the others.
Complementarily, BC-700 and BC-800 were submitted to textural characterization via N»
adsorption and exhibited maximum adsorbed quantity of 81.89 cm’.g"! and 69,34 cm®.g!,
respectively; BC-700 was also superior in terms of specific BET surface area with 189.72 m%.g"
!'and BC-800 with 137.51 m%.g!. The isotherms obtained for both materials exhibited shapes
and hysteresis loops characteristic of mesoporous materials with a significant fraction of
micropores. However, it was observed that with this low-cost and simplified carbonization
method of Macauba EDP, it is possible to produce, with yields equivalent to other methods,
adsorbents capable of removing MB and BPA in aqueous solution; with those carbonized at the

highest temperatures, 700 °C and 800 °C, being the most efficient, with BC-700 slightly better.

Keywords: biomass; carbonization; pyrolysis; biochar; Emerging Contaminants; BPA.
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14

1 INTRODUCAO

A crescente demanda por solugdes ambientalmente sustentaveis, especialmente no
contexto da bioeconomia, tem impulsionado o interesse cientifico pela valorizagdao de

s 1231 Dentre essas biomassas,

biomassas residuais provenientes de cadeias agroindustriai
destaca-se a Macauba (Acrocomia aculeata), uma palmeira oleaginosa amplamente distribuida
e capaz de gerar diferentes subprodutos com potencial aproveitamento industrial 431, O
aproveitamento integral do fruto tem despertado aten¢ao devido ao seu potencial de materiais
de maior valor agregado como o biochar, a0 mesmo tempo em que contribui para a mitigagao

de impactos ambientais associados ao descarte inadequado de residuos agroindustriais [,

O endocarpo da Macauba apresenta caracteristicas fisicas e quimicas favoraveis, como
alto teor de carbono fixo, elevada densidade e baixo teor de cinzas, tornando-se uma fonte de
insumo promissora para a producdo de biochar (. Essas propriedades facilitam sua conversio
termoquimica e favorecem altos rendimentos de carbonizacdo, como ja demonstrado em
estudos comparativos com outras partes do fruto [, Além disso, o potencial do endocarpo como
biomassa para produgdo de biochar ja foi demonstrado em aplicagdes agricolas e energéticas,

refor¢ando sua versatilidade no contexto da economia circular 511,

O biochar, por sua vez, ¢ um material s6lido carbondceo obtido por processos
termoquimicos em atmosfera anéxica ou com limitagdo de oxigénio ''"13], resultando em um
produto altamente estavel e com elevada recalcitrancia quando comparado a biomassa

[14.15] " A pirélise ¢ o método mais utilizado para sua carbonizagdo, decompondo a

precursora
biomassa em fragdes solida, liquida e gasosa [!%!7] sendo o biochar a fracdo solida de maior
interesse para aplicacdes ambientais. Suas propriedades fisicas e quimicas — como porosidade,
area superficial e composi¢ao funcional — sdo fortemente influenciadas pelos parametros de
producdo, especialmente pela temperatura de carbonizagdo, reconhecida como um dos fatores
mais criticos na formagdo da estrutura final do material [!>1¥2% assim como afetam diretamente

o rendimento gravimétrico [%1>211,

Embora o uso da carbonizagdo seja geralmente conduzida sob atmosfera inerte, o
método simplificado em atmosfera ndo inerte - com presenga de oxigénio - realizado em forno
mufla, ganha relevancia devido ao seu baixo custo operacional e simplicidade. Esse método ja

apresentou resultados favordveis na producao de biochars aplicados a remocao de poluentes,
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como ions metélicos e corantes organicos — a exemplo de cobre (Cu) e Violeta de Metila —

utilizando diferentes biomassas agricolas %231,

Paralelamente aos avangos na producao de biochars, cresce a preocupagao mundial com
a contaminacao de corpos hidricos por compostos organicos persistentes. O Bisfenol A (BPA),
um Contaminante Emergente presente em diversos produtos plasticos e associado a efeitos
toxicos e desregulagio enddcrina 2423, representam classes distintas de poluentes que desafiam
os métodos convencionais de tratamento de agua [*%?’]. No Brasil, a presenca de BPA ja foi
registrada em aguas superficiais, 4gua potavel, esgotos brutos e tratados ?7! reforcando a

urgéncia de tecnologias acessiveis para sua remogao.

A adsor¢do tem se destacado como uma técnica eficiente ¢ de baixo custo para a
remog¢ao desses poluentes, inclusive utilizando adsorventes derivados de biomassa, como o

[14,28,29]

biochar Sua eficiéncia estd associada a combinagdo de mecanismos como

preenchimento de poros, interacdes eletrostaticas e afinidade da superficie carbonacea %,

O Azul de Metileno (MB), corante catidnico amplamente utilizado na industria téxtil,
de papel e couro ! & largamente utilizado como molécula modelo em estudos de adsorcio
133 enquanto o BPA representa uma molécula de relevancia ambiental crescente >4, Testar o
desempenho dos biochars frente a esses dois contaminantes permite avaliar a versatilidade do

material em remover moléculas de diferentes caracteristicas fisico-quimicas (polar e apolar).

Portanto, a lacuna reside na producdo de baixo custo de biochar por meio da
carbonizagdo do endocarpo da Macauba, em atmosfera ndo inerte - limitada de oxigénio - e sem
tratamento ou mesmo ativacdo; avaliar o efeito das diferentes temperaturas de carbonizac¢do na
producao e em suas propriedades, assim como validar os adsorventes no que tange a capacidade
e versatilidade frente a poluentes de naturezas distintas (polar e apolar; molécula organica

conhecida e um Contaminante Emergente) como MB e BPA.

O método de carbonizacdo em condi¢des limitadas de oxigénio, foco deste estudo,
posiciona-se como um equilibrio entre a viabilidade de baixo custo e a obtencdo de um
rendimento gravimétrico intermediario e aceitdvel de um adsorvente para remocgao de poluentes

em solugdes aquosas.
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2  OBJETIVOS

2.1 Objetivo Geral

Produzir biochar de baixo custo e baixa complexidade a partir do endocarpo da Macauba
(Acrocomia aculeata) a diferentes temperaturas e em condigdes limitadas de oxigénio

(atmosfera ndo inerte), sem pré-tratamento, pos-tratamento ou ativacao.
2.2 Objetivos Especificos

Estudar a influéncia das diferentes temperaturas ¢ condigdes de carbonizagao (cadinhos

com e sem tampa), sobre o rendimento gravimétrico da producao do biochar;

Analisar a influéncia da temperatura de carbonizag¢ao sobre as propriedades estruturais

e morfologicas dos biochars produzidos;

Testar a remogao e a capacidade de adsor¢ao de cada biochar produzido ¢ do EDP no
processo de adsorcdo do Azul de Metileno (MB) e do Contaminante Emergente (CE)

Bisfenol A (BPA), em fungdo de diferentes concentragdes de adsorvente;

Complementar a caracterizagao dos biochars que se destacaram nos ensaios de adsor¢ao

com analise de suas propriedades texturais.
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3 REVISAO BIBLIOGRAFICA
3.1 Biomassa da Macatba (Acrocomia aculeata)

A busca por fontes de biomassa sustentaveis e de baixo custo, visando a transi¢ao para
uma economia de base biologica (bioeconomia), tem direcionado a atengdo para a valorizagao
. 1 d d . d t. . d t .« . [2,35] I . . 1 . ~
integral de cadeias produtivas agroindustriais e as espécies vegetais oleaginosas sao
destacadas nos setores de produg¢do rural e industrial devido a crescente demanda mundial por

fontes de energias renovaveis ¢!,

A biomassa ¢ composta principalmente por carbono, hidrogénio, oxigénio e nitrogénio
- até mesmo podendo conter enxofre *7); ela é formada usando a energia solar, por meio do
processo de fotossintese, processo no qual as plantas convertem gés carbonico e dgua em
oxigénio e glicose — que sdo armazenados na forma de polimeros como hemicelulose, amido

ou celulose P8,

Na Figura 1 s3o apresentados os principais constituintes da biomassa fibrosa, sendo os
estruturais a celulose, hemicelulose e lignina; e os nao estruturais, em quantidades menores, sao

0s extrativos organicos e minerais inorganicos 1.

Figura 1 — Principais componentes da Biomassa.

l Biomassa |
l
| ]
Substéncias de baixo Substéncias
peso molecular macromoleculares
l l
| ] | ]
L A éri Lignina Polissacarideos
Matéria organica I Mats:rlla I £ I I I
norganica
Celulose |
Extrativos I Cinzas I
Hemicelulose |

Fonte: modificado pelo autor 1,

A celulose ¢ um polimero linear composto por unidades de B-(1- 4)-D-glicopiranose e
seu mondmero consiste em duas unidades de anidridoglicose, denominadas celobiose (Figura 2)
que forma longas cadeias que sao unidas entre si por uma extensa rede de ligagdes de hidrogénio

(491 A ligacdo das moléculas adjacentes ocorre por ligacdes de Hidrogénio (H) e forcas de van
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der Waals e resulta em um alinhamento paralelo, como 1dminas de glicopiranose dispostas em

planos, sucessivas e empilhadas umas sobre as outras formando fibrilas elementares 1],

Figura 2 — Estrutura da celulose.

OH 1
HO
O ot
2 3
OH
HO oH

Fonte: modificado pelo autor 11,

A hemicelulose ¢ um polissacarideo frequentemente associado a celulose, com cadeias
curtas e grau de polimerizagdo baixo. A cadeia molecular da hemicelulose (Figura 3) ¢ composta
por unidades de agucar furanoses (agticar de cinco carbonos) e piranoses (agucar de seis
carbonos) !, Enquanto a celulose possui apenas glicose em sua estrutura - formada por 5.000
a 10.000 monomeros, a hemicelulose tem uma composi¢do de heteropolissacarideos e a

quantidade de mondmeros de sacarideos repetidos é de apenas 150 9],

Figura 3 — Estruturas de alguns dos principais monémeros da hemicelulose: D-Glicose (a), D-Acido
Glucurdnico (b), D-Galactose (c), D-Manose (d), D-Xilose (e) e L-Arabinose (f).

a b C
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& HOOC . Ho °H
HO O OH HO/%/OH O OH
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Fonte: modificado pelo autor ],

A lignina € um polimero ndo linear e polifendlico derivado da polimerizacdo de trés
estruturas fenilpropandides (Figura 4); sua estrutura ¢ altamente ramificada e amorfa que
preenche o espago entre a celulose e a hemicelulose e promove a ligacdo a outros polimeros,
formando complexos [*1*?] desempenhando um papel vital no suporte biomecanico da planta,

auxiliando na proteco contra patdgenos e no transporte de dgua 43441,
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Figura 4 — Constituintes da lignina: alcool p-cumarilico (a), alcool coniferilico (b) e alcool sinapilico

(c).

2 OH | OH |l c OH
/ = X
\O \.O O/
OH OH OH

Fonte: modificado pelo autor 1,

As ligagdes éter predominam entre as unidades de lignina e as covalentes ocorrem entre
a lignina e os polissacarideos; processo no qual as fibrilas elementares de celulose estdo imersas
em uma matriz de hemicelulose e a lignina, que esta localizada principalmente na superficie
externa das microfibrilas, se liga a hemicelulose - impregnando a parede celular, reduzindo o
tamanho dos poros, protegendo os polissacarideos e contribuindo para a recalcitrancia da

lignocelulose 1.

A composicdo e distribuicdio de celulose, hemicelulose e lignina na biomassa
determinam sua cristalinidade e estrutura de poros °1. Sua composigdo quimica, geralmente
contém 40 a 60% de celulose, seguido de 20 a 40% de hemicelulose, 10 a 25% de lignina ¢l e
uma pequena quantidade de cinzas e extrativos *7l; e podem variar consideravelmente entre
diferentes tipos de biomassa ou mesmo dentro de uma mesma espécie, dependendo do tipo de

solo, das condigdes climaticas e da época da colheita [!!],

Dentre as espécies vegetais que tém despertado interesse pela abundancia de sua
biomassa, destaca-se a Macauba (4Acrocomia aculeata (Lacq.) Lodd. ex Mart.), uma palmeira
frutifera que emerge como uma cultura de grande potencial de exploracio. E uma espécie nativa
de zonas tropicais e subtropicais que ¢ amplamente distribuida na América Central, do Norte e
do Sul ¥ ocorrendo principalmente em 4reas de savana e essa ampla distribuicdo indica sua
adaptabilidade a diferentes tipos de solos e condi¢des climaticas 1*); ela resiste e se propaga em

regides com longos periodos de seca, incéndios naturais e solos de ma qualidade ),

No Brasil ¢ conhecida por nomes como Bocaitva, Macatba, Coco-babdo, Bacaitva,
Mocajuba e Macaiba °%; pode ser encontrada em areas dispersas de Cerrado, Cerraddo e

Florestas semideciduais com registros de ocorréncia em diversos estados brasileiros, como
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Mato Grosso do Sul, Mato Grosso, Goias, Minas Gerais, Bahia, Piaui, Rio de Janeiro, Sdo Paulo

e Tocantins B!,

Seu fruto ¢ estratificado — da parte externa para interna — pelas seguintes camadas:
epicarpo, polpa, endocarpo ¢ améndoa (Figura 5) sendo uma fonte de nutrientes € compostos
bioativos, com alto teor de carotendides, tocoferdis, proteinas, compostos fendlicos, acido

51,52]

oleico e fibras ! g [33:34],

e tem sido usado como insumo na produgao de bioproduto

Figura 5 — Estratifica¢do do fruto da Macatba.

EPICARPO

POLPA

ENDOCARPO

AMENDOA

Fonte: modificado pelo autor P61,

O interesse econdmico na Macauba, descrita na literatura como o "Ouro Verde
Neotropical" 1), concentra-se em sua cadeia produtiva principal: a extragio de 6leos de alta
qualidade da polpa e da améndoa. Estes 6leos sdo usados como matérias-primas na industria de

biocombustiveis, como o biodiesel P

Além de possuir propriedades favoraveis para producdo de biocombustiveis, o 6leo
extraido é rico em tocoferdis e carotendides - que conferem propriedades antioxidantes ¢! — e
sdo de alto valor para industria farmacéutica - na prevencio de algumas doengas cronicas P! -
e com boas possibilidades de aplicacdo na medicina, com avaliagdo dos efeitos citotoxicos,
genotdxicos e mutagénicos 7!, para além de toxicidade aguda e subaguda °® e ainda inibicdo

dos efeitos adversos da ciclofosfamida [*°! e a¢do antilipidémica (6!,

Diante deste potencial, essa palmeira tem sido cultivada comercialmente e bastante
difundida sua produgio ®!l; na producdo de o6leo, por exemplo, possui superioridade na

produtividade frente a outras oleaginosas como mamona e soja 62/,

Seus destaques se ddo pela possibilidade de cultivo comercial e pela viabilidade

econdmica dada excelente produtividade de 16 a 25 toneladas de fruta por hectare, o que ndo ¢
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possivel com outras palmeiras como o Dendezeiro (Elaeis guineensis), por exemplo 3¢); além
da vantagem territorial por necessitar de menos agua do que o Dendezeiro, e isso faz com que

esteja apta para seu cultivo em quase todo o territorio nacional 21,

Evidentemente que o aumento da demanda e interesse neste fruto aumentou
consideravelmente sua exploracdo e produgdo comercial e, consequentemente, um aumento no
volume gerado de subprodutos lignocelulésicos — que compreendem o epicarpo, o endocarpo e

as tortas (bagagos) resultantes da prensagem da polpa e da améndoa para extragdo de 6leo [,

Na extracao de 6leos ¢ gerado um subproduto ou residuo até entdo pouco explorado que

é o endocarpo cuja massa corresponde a cerca de 25% da massa do fruto !,

Os residuos agroindustriais da Macauba, epicarpo e endocarpo, t€ém sido subutilizados
na geracdo de energia em caldeiras por métodos tradicionais, mas tém potencial para serem
utilizados como produtos de maior valor agregado [®¥ visto que o endocarpo é um material

lignoceluldsico com alta densidade de carbono.

A gestdo desses residuos lignoceluldsicos representa uma oportunidade para a
valorizagdo integral da biomassa [%4!. O uso desses residuos na produgio de biochar, seja para

5]

aplicagio em remogdo de poluentes [**), no sequestro de carbono atmosférico para aumento de

7]

fertilidade do solo %) ou mesmo em sistemas de armazenamento de energia [*” constituem

usos ambientalmente sustentaveis e comercialmente viaveis.

Esforcos tém sido empreendidos para propor fontes alternativas de materiais precursores
para a producdo de adsorventes, como: 0xidos metalicos, residuos agricolas, estrutura metal-
organica (MOF-5), lodo, compésitos a base de quitosana, zedlitas e resina [°); entretanto, os
adsorventes a base de biomassa tém atraido a aten¢ao da comunidade cientifica devido ao facil

acesso e as suas excelentes propriedades de superficie e ao baixo custo de sua produgio 1,

Dentre as estruturas que compdem o fruto da Macauba, a selegdo do endocarpo como
precursor do biochar, foco central deste trabalho, ndo se baseia apenas em sua disponibilidade

e baixo custo, mas por suas propriedades favoraveis 1],

Estudos comparativos que avaliaram o potencial energético dos diferentes residuos do
fruto da Macatba (epicarpo, polpa residual e endocarpo) para a producdo de carvao vegetal,
concluiram que o endocarpo € o precursor superior pois apresenta maior teor de carbono fixo,

maior densidade e menor teor de cinzas [,
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O elevado teor de matéria volatil e o baixo teor de cinzas sdo propriedades que conferem
ao endocarpo da Macauba um 6timo material para sua conversao por processo de pirdlise, uma

vez que essas caracteristicas favorecem um maior rendimento de produtos [,

Este potencial ¢ validado pela literatura, que ja pesquisa o uso do endocarpo da Macauba

como precursor de biochars produzidos por pirdlise em atmosfera inerte e, na maioria, das vezes

ativados quimicamente [1%-61.70-75],

3.2 Producao de Biochar

O biochar ¢ definido como um material solido, rico em carbono, obtido através da

conversao termoquimica de biomassa em atmosfera andxica ou com presenca limitada de

=131 resultando em um material de alta estabilidade e elevada recalcitrancia -

oxigénio !
resisténcia a degradacdo -, quando comparado a natureza biodegradével da biomassa precursora
[14,15]

A literatura descreve diversos métodos de conversdo termoquimica para a produgdo de

biochar, que diferem em complexidade, custo e produto final desejado 276781 O método mais

6]

usado ¢ a pirélise ['®) e mais reportado em estudos cientificos.

Outros métodos, como a carboniza¢do hidrotérmica e a gaseificagdo, também sdo

relatados, mas possuem focos distintos - produ¢do de hidrochar em fase aquosa ou priorizagao

[79 [17]

da fragdo gasosa, respectivamente [7°!. Estes sdo métodos eficazes para converter biomassa ['7],

(891 de modo a decompor termoquimicamente a

porém a pirdlise tem sido amplamente aplicada
biomassa em 3 (trés) subprodutos: gis, 6leo e biochar sélido 74!l sendo este ultimo um

produto com alto teor de carbono.

A carbonizagdo € um processo da pirdlise na producdo de materiais carbonaceos em
condi¢des anoxicas ou com déficit de oxigénio ¥2#3l; usando altas temperaturas, a carbonizacio
é utilizada para transformagdo de biomassa bruta em materiais com maior estrutura porosa (4,
Normalmente, as biomassas sdo carbonizadas na faixa de temperatura de 200 °C a 1200 °C sob

uma atmosfera de gas inerte (%],

Neste processo, o teor de carbono de um material sofre aumento devido a degradacao
térmica das espécies ndo carbonaceas [*¢!. A limitacio ou mesmo inexisténcia do oxigénio é

importante para evitar a oxidacdo do carbono, bem como para limitar a formagdo de agua e
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outros gases °71. Como resultado, tem-se um efeito importante na 4rea superficial especifica e

porosidade 331,

O processo de carbonizacdo envolve a decomposicdo térmica dos principais
componentes estruturais da biomassa: a hemicelulose (que se decompde em temperaturas mais
baixas, entre 220 °C a 315 °C), a celulose (que se decompde em uma faixa mais estreita, entre
315 °C a400 °C) e a lignina (que possui uma decomposic¢ao lenta e gradual, ocorrendo em uma

faixa ampla de temperatura, entre 160 °C a 900 °C) 1121,

Usualmente na pirdlise, carboniza-se a biomassa utilizando reatores ou fornos
especificos e tecnologicos - como de leito fixo, leito fluidizado, rotativos, de plasma,
microondas, solar, dentre outros - além de uma atmosfera controlada e inerte, usualmente sob
fluxo continuo de nitrogénio (N2) ou argdnio (Ar) 781 o que torna este processo mais custoso
e complexo, dificultando até mesmo produ¢do em larga escala. Inclusive, este método foi
utilizado para a producao de biochar de Macauba em atmosfera de argonio, visando a adsor¢ao

de uranio em solugdo aquosa 173741,

Processos em atmosfera inerte maximizam o rendimento de s6lido ao suprimir reagdes
de oxidacdo ®'1. Em contraste, a carbonizacio em atmosfera oxidante, favorece a combustio

(queima) da biomassa, resultando em rendimentos muito baixos e alta formacao de cinzas.

A carbonizacao de biomassa por pirdlise de maneira simplificada e de menor custo - em
forno comum e condigdes limitadas de oxigénio (atmosfera ndo inerte) e sem ativacao — € pouco
investigada, uma vez que se espera menor rendimento de produgao e biochar de pior qualidade.
Entretanto ha pesquisas com resultados favoraveis, como na adsor¢do de cobre (Cu) e também
do corante Violeta de Metila por biochars produzidos a partir da carbonizagdo da palha de

canola, da palha de amendoim, da palha de soja e da casca do arroz >3,

Este método, dispensa o uso de reatores especificos/tecnologicos, purga do gas
atmosférico ou mesmo uso de gases inertes, que representam um custo operacional
significativo. O processo ¢ conduzido em um forno mufla e na condig¢do de oxigénio limitado
(atmosfera ndo inerte) pela utilizagdo de cadinhos com tampas, que restringem a incidéncia de
ar. Esta abordagem simplificada ja foi utilizada para a producdo de biochar a partir do
endocarpo da Macatiba para fins de avaliar seu potencial como substrato a hidroponia ! e para

analisar seu potencial para fins energéticos [*],
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O processo de carbonizagdo produz um material amorfo, com propriedades fisico-

[77]

quimicas dependentes dos parametros de producao e a temperatura de carbonizagdo tem

destaque como fator de maior influéncia, sendo, em muitas pesquisas, o objetivo central para a

otimizacdo da producdo de biochar [1>18-20],

A temperatura e o tempo do processo de carbonizagao tém influéncia na morfologia dos
poros e na estrutura porosa do biochar %2I; 0 seu aumento induz transformagdes fisico-quimicas

significativas no material, a estrutura de carbono aromatico e a porosidade tendem a aumentar
[13]

Em termos gerais, temperaturas mais elevadas resultam em um biochar com maior
estabilidade térmica e maior teor de carbono (devido a perda intensificada de matéria volatil),
€, 0 mais importante para aplicacdes adsortivas, um maior desenvolvimento da estrutura porosa

e um consequente aumento da 4rea superficial especifica [1°2%76],

Assim como o tipo do seu material precursor - o tipo da biomassa - a temperatura
também é determinante na presenca ou perda de grupos funcionais de superficie do biochar ©%;
grupos carboxilicos, hidroxila, amina e amida sdo grupos funcionais de superficie que podem

contribuir para sua capacidade de adsor¢do de um biochar 7],

Os biochars obtidos em temperaturas mais baixas apresentaram sitios organicos mais
polares e se mostraram mais eficientes na remog¢do de poluentes inorganicos '), enquanto
biochars produzidos em temperaturas mais altas levam a perda de grupos funcionais polares e
aumenta sua aromaticidade, sendo geralmente mais eficazes para poluentes organicos de carater
mais apolar - como o BPA, pois a adsor¢do de contaminantes orgénicos geralmente aumenta

com a aromaticidade dos materiais de carbono %],

Para compreender todas estas mudancas induzidas pela temperatura, sdo empregadas
técnicas de caracterizagcdo quimica e fisica, como a Andlise Termogravimétrica (TG/DTG) -
que mede a perda de massa do material em fun¢do do aquecimento controlado; a morfologia da
superficie ¢ analisada por Microscopia Eletronica de Varredura (MEV), uma técnica que
fornece imagens de alta resolucdo, permitindo a visualizagao direta da topografia da superficie,

sendo possivel observar qualitativamente a formacao da estrutura de poros.

Para avaliar as mudangas quimicas gerais, utiliza-se a Espectroscopia no Infravermelho

por Transformada de Fourier (FTIR), que identifica as vibragdes das ligagdes quimicas
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presentes, servindo para mostrar a transformagdo da biomassa original - rica em componentes
como celulose e lignina - em um material carbondceo, através da reducdo ou desaparecimento

das bandas caracteristicas do precursor a medida que a temperatura de carbonizagdo aumenta.

Complementarmente, a Difracdo de Raios X (DRX) analisa a organizacao estrutural do
carbono. Servindo para mostrar como a estrutura do biochar evolui de um estado amorfo
(desorganizado) em baixas temperaturas para um material com maior grau de organizacio

estrutural em temperaturas elevadas.

Um importante indicador, em termos de producdo e ndo necessariamente caracterizacao
¢ o rendimento gravimétrico, que acaba por ser uma métrica de eficiéncia do processo de
produgdo — onde correlaciona a massa da biomassa precursora com a massa de biochar obtido.
A literatura demonstra que, entre os parametros de processo, a temperatura final de

carbonizacio e seu tempo de exposicio influenciam no rendimento gravimétrico 15201,

Ao passo que se aumenta a temperatura da carbonizagdo, leva-se a uma diminui¢ao no
rendimento de biochar ['>2!. Isso ocorre porque temperaturas mais elevadas fornecem mais
energia para a degradacdo das ligagdes da biomassa, resultando em uma maior liberacdo de
matéria volatil sob forma de gases ndo condensdveis e gases condensaveis (bio-6leo),
diminuindo assim a massa sélida residual %3761, Portanto, é necessaria uma estratégia otima

em termos de rendimento de produgio de biochar e capacidade de adsor¢io 31,
3.3 Adsor¢io na remoc¢iao de Contaminantes Emergentes (CEs)

A literatura aponta que uma das aplicagdes multifuncionais mais promissoras do biochar
¢ seu uso como um adsorvente de baixo custo e sustentavel para a remediagdo ambiental e

tratamento de aguas residudrias [1423-2%:20.91],

Para remocado de poluentes de dificil degradagdo, tratamentos convencionais — fisico,

imi biologi a de ft isfatoria 27) de adsorca
quimico e biologicos - ndo os removem de forma satisfatoria '“’! e o processo de adsorgdo tem
se destacado dentre outras técnicas para eliminar poluentes devido ao seu menor custo, impacto
ambiental reduzido e abordagem prética e direta na operacdo [°2). Em alguns casos, a adsor¢io
¢ tida como 6tima opgao como um poés tratamento aos Processos de Oxidacao Avangada (POA)

e bioldgicos na remogdo de contaminantes emergentes (3,

A adsorg¢do ¢ um processo de tratamento fisico-quimico onde o poluente (adsorvato),

presente na fase aquosa, ¢ transferido e retido na superficie solida do adsorvente 4. Pode ser
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categorizado em dois tipos principais: adsor¢do fisica ou fisissor¢do, que envolve forcas
intermoleculares fracas; e adsor¢do quimica ou quimissor¢do, que envolve a formacdo de uma
ligagio quimica mais forte 1. No caso do biochar, a remocdo de contaminantes ocorre, de
forma simplificada, por uma combinagdo de mecanismos, como a retencao fisica da molécula
na estrutura porosa do material (preenchimento de poros), a afinidade da superficie carbonacea

e a atracdo entre cargas 01,

A capacidade adsortiva depende do material precursor, modo de producdo, tipo de
poluente a ser adsorvido, pH, tempo de contato e temperatura [°*). Para aumentar a eficiéncia da

adsor¢io os adsorventes podem ser submetidos a processos de ativacio /), que pode ser

quimico ou fisico — e oneram a produgao.

Durante a ativacdo quimica, inicialmente o precursor pode ser impregnado com
diferentes agentes ativantes (KOH, ZnCl, FeClz, H3POg, etc.) e essa mistura € pirolisada. Apos
a pirdlise (sob atmosfera inerte), o agente ativante ¢ extraido do material carbonizado, de forma
a produzir carvdes ativados com elevada area superficial que pode variar de 300 a 2.500 m?.g !
(9] Na ativacdo fisica o carvdo, apds ser carbonizado, sofre um tratamento térmico sob fluxo
de gases oxidantes, como vapor d’dgua e dioxido de carbono (COz); o processo de ativagao
usando CO, aumentou cerca de 775 vezes a area superficial especifica BET de um biochar, de

0,83 m?.g"! para 643 m?.g! 74,

Entretanto, um material com grande area superficial ndo significa necessariamente que
toda essa area esteja disponivel para adsor¢do; fatores como impedimento estérico — tamanho
ou formato do adsorvato - podem limitar o uso do material; além disso, modificacdes na

98,99

superficie podem obstruir os poros, o que reduz a area superficial efetiva. °*°l, Um adsorvente

com alta area superficial, mas com didmetro de poro moderado (meso a macroporoso),

apresentou alto nivel de capacidade de adsor¢do de Azul de Metileno *3,

Para avaliar e comparar o desempenho da adsorcdo faz-se testes de adsorcdo e
usualmente sdo preparadas solugdes em escala de laboratorio com moléculas que representam
ou possam representar diferentes classes de contaminantes e o Azul de Metileno (MB) tem sido

amplamente adotado como um padrio para efeitos comparativos 1%,

O MB ¢ um contaminante organico comum em efluentes da induastria téxtil de

[32

tingimento *!1, de papel e couro *?!, sendo classificado como um corante polar e catidnico. Sua
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remogdo por adsorventes de biomassa tratada da Macatiba, ja foi relatada [1°; testar o MB

permite, portanto, uma comparagio de desempenho com outros adsorventes conhecidos 2%/,

No entanto, o foco de inovagao deste trabalho nao reside s6 na producao econdémica do
biochar que ¢ capaz de adsorver moléculas de MB em solugdo aquosa, mas também na
validagdo destes biochars em serem capazes de remover um Contaminante Emergente (CE); até
por ser um conceito relativamente novo, o qual foi proposto pela primeira vez em 2001, e

despertou o interesse da pesquisa cientifica global e vem se desenvolvendo rapidamente 1!,

CEs podem ser definidos como compostos (naturais ou sintéticos) que ndo sao
comumente monitorados, mas que possuem o potencial de causar efeitos adversos a saude e ao

a 10271041 "3 compostos ou moléculas que podem estar presentes em produtos do

ecossistem
cotidiano, como embalagem de alimentos, de higiene pessoal, farmacéuticos, efluentes
industriais, fertilizantes e pesticidas ['%]; e tém recebido muita atenco devido aos seus efeitos

deletérios sobre a vida humana, das plantas e dos animais 1%,

Os ecossistemas aquaticos podem ser considerados os mais vulneraveis a contaminagao,
e a maioria dos contaminantes podem eventualmente acabar nestes ecossistemas, se nao

1071 Esses compostos tém sido persistentemente detectados

diretamente, por meios indiretos |
em diversas matrizes ambientais, principalmente no meio aquatico '%l. No entanto, apenas
recentemente os contaminantes emergentes comegaram a ser quantificados no meio ambiente e

reconhecidos como potencialmente perigosos 711,

Dentre os CEs, uma especial aten¢do tem sido dada aos Desreguladores Endocrinos
(DE), que sdo substancias que tem capacidade de interferir no sistema enddcrino dos
organismos — principalmente nas glandulas responsaveis pela sintese de hormonios — podendo

causar desequilibrio hormonal, infertilidade e até mesmo cancer nos 6rgios reprodutores 241,

Neste cenario, tem-se a relevancia do Bisfenol A (BPA) por ser ¢ um composto
industrial produzido em grande escala, usado como insumo na fabricacdo de plasticos,

1991 "sendo encontrado facilmente no meio ambiente devido sua

policarbonatos e resinas epoxi
presenca em diversos produtos e devido ao descarte destes em meio aos residuos residenciais e

industriais (119,
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Estudos associam a exposi¢do cronica ao BPA, mesmo em baixas concentragdes, a
prevaléncia de doencas cardiovasculares, diabetes e anomalias nas enzimas hepaticas,

refor¢ando o efeito negativo do BPA %1,

Na Alemanha, em 2002, foi constatada ocorréncia de BPA em diversos locais e
ecossistemas, tanto aguas superficiais, sedimentos de rios, lagos e canais, efluentes de esgoto,

lodo de esgoto, assim como em amostras de aterro sanitario e chorume 2/,

A ocorréncia de BPA no Brasil também ja ¢ documentada, tanto em aguas superficiais,
4dgua distribuida como potdvel, esgoto bruto e esgoto tratado [*), refor¢ando a relevancia do
estudo no contexto nacional por ndo serem removidos nas plantas de tratamento de 4gua nem

das de tratamento de esgoto.
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4 MATERIAIS E METODOS

Os frutos foram coletados de uma palmeira Macauba (Acrocomia aculeata) situada no
perimetro urbano do municipio de Dourados/MS, na bacia do Rio Parand, cujas coordenadas

UTM sdo 731.245,36 m L, 7.544.412,61 m S, Zona 21k.

Em seguida os frutos foram processados, obtendo-se primeiro o endocarpo da Macauba
para posteriormente transforma-los em biochars por meio de carbonizagdo. Os biochars

produzidos foram submetidos a analises de caracterizagdo e ensaios experimentais de adsor¢ao.
4.1 Obtencao do endocarpo da Macaiba

Nesta etapa, o processamento dos frutos da Macauba foi feito no Laboratorio de
Biocombustiveis do CLF/UFGD e no Laboratéorio de Inovagdo Tecnoldgica e
Manutencdo/UFGD. Os principais equipamentos utilizados foram uma despolpadeira
mecanizada desenvolvida e produzida por Chuba et al.(2019) 'l e estufa (modelo LUCA-
80/42, marca LUCADEMA).

Apbs a coleta dos frutos, para obtengdo do endocarpo, foi realizada remogao do epicarpo
de maneira manual de modo a deixar exposta a camada subsequente, que ¢ a polpa. Entdo os
frutos foram secados (Figura 6-a) na estufa por 1 h com temperatura ajustada em 70 °C para
facilitar a remogdo da polpa e manter integridade da despolpadeira mecanizada !''!. Os
produtos da despolpa foram materiais esféricos de coloracdo escura, sendo o endocarpo

contendo a améndoa (Figura 6-b).

Figura 6 — Etapas de processamento do fruto da Macauba para obtencdo do endocarpo: (a) secagem em

estufa; (b) fruto apds despolpa mecanizada; (q) endocarpo separado da amendoa
ey X :

Fonte: Elaborado pelo autor.
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Posteriormente, os endocarpos foram quebrados manualmente e as améndoas foram

separadas, obtendo-se fragmentos de endocarpos de variados tamanhos (Figura 6-c).
4.2 Producao do Biochar

A producao dos biochars a partir do endocarpo da Macauba foi feita no Laboratério de
Biocombustiveis do CLF/UFGD, Laboratoério de Engenharia de Processos de Produ¢ao/UFGD
e Laboratorio de Energias Renovaveis — LENER/UFGD.

Os principais equipamentos utilizados foram forno tipo mufla (modelo LUCA2000F/DI,
Marca LUCADEMA), moinho de facas tipo Willey (modelo SL-31, marca SOLAB), moinho
de bolas (modelo SL-34, marca SOLAB) e agitador de peneiras eletromecanico (modelo

ABME 0800, marca A BRONZINOX).
4.2.1 Carbonizaciao

Os biochars foram produzidos em forno elétrico, tipo mufla, sem purga e em condi¢des
limitadas de oxigénio (atmosfera ndo inerte), sem pré-tratamento, pos-tratamento ou ativacao.
Foram realizadas 6 (seis) carboniza¢des, uma para cada temperatura final (300, 400, 500, 600,
700 e 800 °C), para obter os respectivos biochars BC-300, BC-400, BC-500, BC-600, BC-700
e BC-800.

Em cada carbonizagdo foram inseridos 6 (seis) cadinhos de porcelana com cerca de 50 g
de EDP em cada, sendo 3 (trés) cadinhos tampados (CT) e outros 3 (trés) sem tampa (ST)
(Figura 7). A variagdo de cadinhos tampados foi feita para restringir o contato do material a ser
carbonizado com o ar atmosférico e, dessa forma, dificultar o processo de oxidacao.

Figura 7 — Ilustracdo esquematica (a) e fotografia (b) dos cadinhos de porcelana, com e sem tampa, no
interior da mufla durante carbonizacgao.

Fonte: Elaborado pelo autor.
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O endocarpo usado foi submetido a aquecimento em forno mufla, com aumento gradual
e ndo linear de temperatura até atingir as temperaturas finais desejadas. Uma vez atingida a
temperatura final, manteve-se constante por 2 h e depois deste periodo foi desligada até atingir

temperatura de resfriamento (Tabela 1).

Tabela 1 — Periodos de aquecimento do endocarpo da Macauba durante carbonizagao.
TEMPERATURA MAXIMA("C)

PERIODOS
300 °C 400 °C 500 °C 600 °C 700 °C 800 °C

Tempo para atingir a temperatura

, . 20 min 30 min 40 min 50 min 1h05 1h20
maxima (a)

Permanéncia a temp. maxima (b) 2h

Tempo para atingir o resfriamento
(=50 °C) (¢)

Exposicio total (a+b+c) 8h00 10h40 13h25 16h10 19h00 21h40

05h40 08h10 10h45 13h20 15h55 18h30

Fonte: Elaborado pelo autor.

Os cadinhos permaneceram na mufla até que a mesma indicasse uma temperatura de
aproximadamente 50 °C para entdo serem retirados e acondicionados dentro de um dessecador
até atingirem a temperatura ambiente para posterior pesagem. Cada biochar, foi identificado

pela nomenclatura “BC-XXX”, onde “XXX” indica a temperatura de tratamento do endocarpo.
4.2.2 Moagem e peneiramento

O endocarpo (EDP) e os biochars produzidos (BC-300, BC-400, BC-500, BC-600, BC-
700 e BC-800) foram primeiramente triturados no moinho de facas e entdo os graos foram

moidos no moinho de bolas de modo a se obter um material mais fino.

ApoOs a moagem, foi realizado peneiramento com auxilio do agitador de peneiras
eletromagnético e separada a fragdo que passou na malha de 150 um (MESH/TYLER 100,
ISO/ASTM 100) e ficou retida na malha de 75 yum (MESH/TYLER 200, ISO/ASTM 200),

portanto os materiais carbonaceos ficaram com granulometria entre 0,075 mm e 0,150 mm.
4.2.3 Rendimento Gravimétrico

Com auxilio de balanca analitica, foram determinadas as massas dos materiais antes e
apds as carbonizagdes, a aproximadamente 22 °C, de modo que o calculo do rendimento

gravimétrico foi realizado conforme Equagdo (4.1).
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Mgim

ne = 100 X

4.1)

ini

Sendo:

ncG = rendimento gravimétrico (%);
Mini = massa inicial - endocarpo (g);

Mfim = massa final - biochar (g).

A analise estatistica foi realizada com auxilio do software OriginPro 2024 - Learning
Edition (OriginLab Corporation), sendo primeiramente calculada a normalidade pelo teste de
Shapiro-Wilk (grau de confianca de 95%) e, apds confirmacdo de se tratar de dados
paramétricos, foi realizada analise da variancia com dois fatores (ANOVA-2) e teste de Tukey,
para avaliar a influéncia individual e simultdnea da condi¢ao do cadinho (com tampa e sem

tampa) e da temperatura de carbonizagao.
4.3 Caracterizacao

As amostras dos biochars produzidos, assim como o endocarpo, foram submetidas a

caracterizagdo por analises de TG/ DTG, FT-IR, MEV e DRX.
4.3.1 Analise Termogravimétrica (TG/DTG)

As analises de TG/DTG foram feitas no LP3/INQUI/UFMS com uso do analisador

termogravimétrico TGA (modelo Q50, marca TA Instruments).

Foram realizados ensaios sob fluxo de ar sintético (combinacio de 40 mL.min' de
nitrogénio (N2) com 60 mL.min"! de ar atmosférico) para determinacdo do teor de oxidos
(residuos) e também em atmosfera inerte sob fluxo de 100 mL.min"! de nitrogénio (N,) para

determinagdo do teor de carbono e inorganicos.

As amostras do endocarpo (EDP) e biochars foram inseridas no analisador
termogravimétrico - resolucao ¢ de 0,1 pg e acuracia menor igual a £ 0,1% - a uma temperatura
de até 900 °C, com razdo de aquecimento a 10 °C.min"! — a fim de avaliar o comportamento da

decomposic¢do térmica da celulose, hemicelulose e lignina do endocarpo da Macauba.
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4.3.2 Morfologia (Microscopia Eletronica de Varredura - MEYV)

Para avaliar a morfologia da superficie dos materiais produzidos foram coletadas
micrografias usando microscépio eletronico de varredura com canhao de efeito de campo MEV-
FEG (modelo Inspect F50, marca FEI Company), no Laboratorio de Microscopia Avangada -
LMA/UNESP.

As micrografias foram coletadas com voltagem de aceleracao de 20 kV, distancia de
foco de 10 mm e faixas de magnificagcdo de 2.500x e 5.000x. Antes de proceder as analises, as
amostras foram metalizadas com ouro a fim de se obter uma boa condutividade elétrica

superficial.

4.3.3 Grupos Funcionais (Espectroscopia no Infravermelho por Transformada de

Fourier - FT-IR)

Utilizando um Espectrometro no Infravermelho por Transformada de Fourier FT-IR
(modelo 4100, marca JASCO) do Laboratério de Optica e Foténica - LOF/UFGD, a técnica
analitica foi empregada para examinar a composicdo de grupos quimicos nas moléculas

presentes na biomassa e nos biochar.

As amostras foram preparadas em pastilhas de brometo de potéssio (KBr) e as analises

foram feitas com o espectroscopio na regido de 400 cm™ a 4.000 cm™'.
4.3.4 Analise Estrutural (Difratometria de Raios X - DRX)

Para avaliar a estrutura cristalina do endocarpo e dos biochars, foi realizada analise de
difratometria com difratometro modelo XRD 6000 (marca Shimadzu) — no Laboratorio de
Catalise e Materiais LABCAT/UFBA — usando radiagdo Cu-Ka (A = 1,5418 A), com angulo
20 variando de 5° a 80°, tensdo de 40 kV, corrente de 30 mA ¢ velocidade de varredura de
2°min!. As fendas de divergéncia e de dispersdo foram ajustadas em 1° cada e a fenda de

recepcao em 0,3 mm.
4.4 Ensaios de Adsorc¢ao

Os ensaios de adsor¢do foram realizados no Laboratério de Cromatografia e
Espectrometria Aplicada — LECA/UFGD nos quais os principais equipamentos utilizados

foram espectrofotometro de absor¢cdo molecular na regido do ultravioleta-visivel UV-VIS
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(modelo CARY-50, marca Varian Inc.) e mesa agitadora orbital (modelo TE-141, marca

TECNAL).

Realizou-se ensaios com dois tipos de adsorvatos: o indicador quimico Azul de Metileno
P.A. (Dinamica® Quimica Contemporanea Ltda) — MB - e o Contaminante Emergente (CE)

Bisfenol A (Sigma-Aldrich) — BPA.

Os adsorventes testados foram os 6 (seis) biochars produzidos e o EDP - material
precursor. Apenas para o EDP, para minimizar a interferéncia nos resultados devido a
substancias residuais dos constituintes dos 6leos extraidos, precedeu-se extragdo por meio de
sistema Soxhlet, utilizando sucessivamente hexano e metanol e o material extraido foi

desconsiderado.

Em triplicata, foram testadas diferentes concentra¢des de adsorvente; nos ensaios do
MB foram 4 (quatro) concentragdes (0,25 g.L ™!, 0,50 g.L !, 0,75 g.L"' ¢ 1,00 g.L!); para o BPA
foram 5 (cinco) concentragdes, sendo: 0,50 g.L!, 0,75 g.L', 1,00 g. L', 2,50 gL' e 5,00 g.L ..

Os ensaios foram conduzidos em Erlenmeyers de 250 mL, nos quais foram misturadas
as massas dos adsorventes a 100mL de solu¢do aquosa preparada com adsorvato alvo (MB ou

BPA) - com concentracio inicial de até 15 mg.L™!.

O pH das solugdes ndo foram ajustados, permanecendo o valor obtido apds a diluigao,
que foi proximo a 5,5. Quando do preparo da solucao do BPA, para facilitar sua diluicdo em

agua, foi usado cerca de 10 mL.L-1 de metanol com grau de pureza HPLC.

As misturas foram submetidas a agitagdo em mesa agitadora orbital, por 4 h a 120 rpm
e ambiente com temperatura controlada em 23 °C +2 °C. Apds a agitagdo, o adsorvente foi
separado da solugdo por meio de filtracdo, utilizando filtros descartaveis de membrana de PTFE
(teflon) - malha 0,22 ym — acoplados em seringas também descartaveis e entdo realizadas

medidas de absor¢ao molecular no UV-VIS.

Para obtencdo da concentracdo residual de cada adsorvato foram construidas as
respectivas curvas analiticas e determinadas suas equagdes por regressao linear. Para isto, foram
preparados diferentes padrdes por meio de diluicao das solugdes estoque, com concentragdes
conhecidas e realizadas leituras das respectivas absorbancias no espectrofotometro na regiao do
ultravioleta-visivel UV-VIS em seus respectivos picos de absor¢ao, sendo 665 nm para o MB

e 226 nm para BPA.
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Para o calculo do percentual adsorvido ou removido, foi usada a Equagdo (4.2) .

CINICIAL - CFINAL

R =100 X (4.2)
INICIAL

Sendo:

R =remocao (%);

CiviciaL = concentragdo inicial do adsorvato (mg.L™1);
CrinaL = concentracdo final do adsorvato (mg.L™!);

A capacidade de adsor¢ao dos materiais carbonaceos foi calculada conforme Equacao

CINICIAL - CFINAL (4 3)
M .

ge =V X
Sendo:
qe = capacidade de adsor¢do (mg.g™);
V = volume da solucdo inicial (L)
CiniciaL = concentracgdo inicial do adsorvato (mg.L™1);

CrinaL = concentragio final do adsorvato (mg.L™);

M = massa de adsorvente utilizado (g).

Entre os ensaios experimentais, as vidrarias foram submetidas a lavagem sequencial na

qual primeiramente feita pré-lavagem, seguido de imersao em solucdo de 4cido nitrico (HNO3)

a 5% e depois enxague de no minimo 6 (seis) vezes com agua destilada.

4.5 Analise Textural (Analisador de Area Superficial e Porosidade — ASAP)

De forma complementar, os materiais que apresentaram melhores desempenhos nos

ensaios de adsorcio de MB e BPA, foram analisados pelo Analisador de Area Superficial e
Porosidade ASAP (modelo ASAP 2020, marca Micromeritics) do Laboratorio do Grupo de
Fisico-Quimica de Materiais GFQM/UNESP/ARARAQUARA. O preparo das amostras
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envolveu desgaseificagdo por 24 h a 150 °C em vacuo. As condi¢des de andlise para adsor¢ao

de nitrogénio (N2) foram na faixa de pressdo de 10-6 < P/Po < 0,99.

A area superficial especifica BET (Brunauer-Emmett-Teller) foi obtida pelo método
multiponto, na faixa de 0,05 < P/Po <0,3. O volume total dos poros foi determinado a partir do
ponto de adsorcdo a uma pressdo relativa (P/Po) 0,95. A distribuicdo dos poros foram

determinadas pelo método BJH (Barrett-Joyner-Halenda).
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5 RESULTADOS E DISCUSSAO
5.1 Rendimento Gravimétrico (nc) da Produc¢iao do Biochar

Na Figura 8, estdo as fotografias dos endocarpos apods carbonizagdo produzidos a
diferentes temperaturas de carbonizacao e da condi¢ao — cadinho sem tampa (ST) e com tampa

(CT) - a fim de possibilitar maior ou menor incidéncia de ar atmosférico.

Figura 8 — Cadinhos com tampa (CT) e sem tampa (ST), contendo o material obtido apds carbonizagdes
do endocarpo da Macauba.

BC-500

BC-700
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BC-800

Fonte: Elaborado pelo autor.

Fica evidente pelas imagens da Figura 8 que os biochars produzidos com tampa (CT)

preservaram a matriz carbondcea — mais escuros € uniformes - do que os carbonizados sem

tampa (ST) — cinzas mais aparentes. Essas diferencas ficam maiores conforme a temperatura de

carbonizagdo aumenta. Os rendimentos gravimétricos foram calculados conforme Eq. (4.1) e

na Tabela 2 estdo apresentadas as médias de suas triplicatas.

Tabela 2 — Rendimento gravimétrico médio da produc¢do do biochar obtido a partir do EDP da Macauba.

RENDIMENTO
CONDICAO. Tﬁgl" GRAVIMETRICO V10 SHAPIRO-WILK
MEDIO “nc” (%) D

300 35.08 0.874 0.405

400 30,44 0.534 0.990

or 500 28,06 0.321 0.365

600 26,98 0,025 0271

700 2635 0.431 0.911

800 25.88 0.607 0.165

300 31.60 0.236 0.715

400 25.19 0.224 0,655

ot 500 21.88 0.228 0.333

600 19.20 0278 0,100

700 1533 0,033 0.314

800 1105 0,371 0,984

CT = condig¢do experimental no qual o material foi carbonizado com cadinho tampado;
ST = condicdo experimental no qual o material foi carbonizado com cadinho sem tampa.

Fonte: Elaborado pelo autor.

Nota-se que, de forma geral, obtivemos maiores rendimentos nos processos com tampa,

conforme esperado. A influéncia da tampa € maior quando em maiores temperaturas; e também,

a0 passo que a temperatura aumenta, diminui o rendimento gravimétrico 2! - o0 que indica maior

degradagdo de celulose, hemicelulose e lignina.

Para compreender se estas diferencgas sao significativas fez-se a analise estatistica e para

escolha do método correto, primeiramente fez-se necessario Teste de Normalidade pelo método

de Shapiro-Wilk, com grau de confianga de 95%, o qual resultou tratar-se de uma série
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paramétrica, ou seja, distribui¢do normal uma vez que resultado “p” para todos os grupos foi

acima de 0,05 (Tabela 2).

Para este tipo de distribuicao de dados e quantidade de variaveis, a Anélise de Variancia
de 2 fatores (ANOVA-2) foi utilizada (Tabela 3), sendo os dois fatores as diferentes
temperaturas de carbonizacdo e a condi¢do de carbonizac¢do (com e sem tampa).

Tabela 3 —ANOVA-2 do rendimento gravimétrico em fungdo dos fatores: condi¢ao de carbonizagdo (CT
ou ST), temperatura (300 °C~800 °C) e ambos em simultaneo (cond. x temp.).

GRAU DE
SOMA DE QUADRADO
FATORES LIBE(l;lI))ADE QUADRADOS MEDIO Fanova PANOVA-2
Condigdo 1 611,24 611,24 3.525,66 <0,001
Temperatura 5 892,66 178,53 1.029,78 <0,001
Cond. X Temp. 5 119,18 23,84 137,49 <0,001
Residuos 24 4,16 1,73¢?

Fonte: Elaborado pelo autor.

Os valores de “p” da ANOVA-2 foram abaixo de 0,05 para os 2 (dois) fatores de forma
individual e também da interagdo destes; o que indica que, com 95% de confianca, houve
diferenga estatistica no ng dentre os diferentes valores de temperatura testados, dentre as
diferentes condigoes testadas e também da interagao de todas niveis destes 2 (dois) fatores de
forma integrada. Na Figura 9 ¢ mostrado o resultado do teste de Tukey da influéncia da

interacao de ambos os fatores sobre o ng.

Figura 9 — Teste comparativo de Tukey — rendimento gravimétrico da carbonizag¢do do endocarpo da
Macauba em fungdo da interag@o dos fatores: Condigdo X Temperatura.
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Independentemente da temperatura, as carbonizagdes realizadas em cadinhos sem tampa
possuem rendimentos inferiores — comparado aos com tampa - e diferentes entre si; seguem um
padrao linear quase uniforme em que quanto maior temperatura, menor o rendimento no

processo de carbonizagao.

O baixo rendimento com cadinhos sem tampa, como de 12% no caso da carbonizacio a
800 °C, ocorreu principalmente por haver maior contato com oxigénio, propiciando assim uma
maior queima da biomassa e resultando em maiores teores de cinza, consequentemente

diminuindo a massa final.

Embora para carboniza¢des com recipientes tampados também tenham a caracteristica
de quanto maior a temperatura, menor o rendimento, a inclinagdo da reta diminui ao passo que
aumenta a temperatura, de modo a apresentar rendimentos gravimétricos estatisticamente iguais

para altas temperaturas (600 °C, 700 °C e 800 °C), cujas médias ficaram em cerca de 26%.

A limitagdo da incidéncia de oxigénio ¢ importante para evitar a oxidagdo do carbono,
bem como para limitar a formacao de 4gua e outros gases 7l e por isso vé-se que os cadinhos
Com Tampa performaram melhor seus rendimentos, além de visivelmente possuirem menores

teores de cinza (Figura 8).

Biochars produzidos a partir do endocarpo da Macatba em condi¢des limitadas de
oxigénio, a 325°C e 450°C — com exposi¢do ao aquecimento de 2 hora e 15 min,
respectivamente, obtiveram rendimentos gravimétricos de 40% e 35% [°! - tais rendimentos
podem ter apresentado leve superioridade, pois inseriram a biomassa no forno pré-aquecido e
estabilizado na temperatura alvo, enquanto no presente estudo a biomassa foi exposta ao
aquecimento por mais tempo — foi inserida no forno desde inicio do aquecimento até atingir a

temperatura de carbonizagao.

Rendimentos mais semelhantes ao presente estudo, também tendo como precursor o
endocarpo da Macaiba sendo carbonizado em condi¢des limitadas de oxigénio, foram
observados: sendo 34,43% a 36,10%, por 1 hora de exposicao as respectivas temperaturas alvo
de 450 °C, 550 °C e 650 °C e exposicao total ao aquecimento durante 8 hora, 9 hora e 10 hora
(8l: e rendimento de 34,35% na carboniza¢do com tempo de aquecimento total de 4h30, dos
quais 30 min a 550 °C [®; a leve superioridade dos rendimentos destes estudos pode ter ocorrido
devido a razdo de aquecimento destes terem sido muito menores - na ordem 1 a 2 °C.min’,

enquanto no presente estudo foi na média de 12,5 °C.min"! para estas mesmas temperaturas.
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Por meio de pirdlise em atmosfera inerte de argénio, foi produzido biochar a partir do
endocarpo da Macatuba a diferentes temperaturas por 1 hora, razdo de aquecimento de
10 °C.min"' e obteve-se rendimentos para temperaturas de 250 °C, 350 °C, 450 °C, 550 °C,
650 °C e 750 °C, de 75%, 46%, 39%, 36%, 34% e 33% respectivamente ['); que sdo superiores
ao do presente estudo — o que ¢ esperado uma vez que se trata de procedimento em atmosfera
inerte; entretanto, esta diferenca de 7 a 8% para altas temperaturas entre ndo inerte (este estudo)

e inerte pode ser considerada pequena face a diferencga de producao.
5.2 Caracterizagao
5.2.1 Analise Termogravimétrica (TG/DTG)

Na faixa de temperatura abaixo de 150 °C, ocorre perda de massa referente a
desidratacdo e nio a degradacdo dos componentes lignoceluldsicos 7197275100121 “nor i550 0

resultados foram expressos em base seca.

O comportamento da decomposicao térmica das principais substancias que compdem a
biomassa endocarpo da Macatba: hemicelulose, celulose e lignina podem ser observadas pelas
curvas TG e DTG. A Figura 10-a mostra a pirdlise do endocarpo de Macatiba modelada com
as trés reacdes paralelas independentes, de acordo com o formato das curvas DTG, usando o
procedimento de deconvolugao baseado na fun¢do do modelo de Gauss, no qual o coeficiente
de determinacao (12) foi de 0,9979.

Figura 10 — a) Curvas TG-DTG deconvoluida do EDP da Macauba - condigdes: razdo de aquecimento

= 10 °C.min-1, fluxo de N, = 100 mL.min"!. b) Curvas TG-DTG do EDP - condig¢des: razdo de
aquecimento = 10 °C.min"', fluxo de ar sintético (60% ar atm € 40% de N;) = 100 mL.min"".
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Fonte: Elaborado pelo autor.
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De acordo com a curva DTG deconvoluida (Figura 10-a), observam-se trés etapas de
decomposic¢do independentes. A primeira etapa ocorre na faixa de temperatura entre 200 °C e
400 °C referente a hemicelulose; entre 330 °C e 405 °C ocorre a decomposicao da celulose; ja
a decomposi¢ao da lignina tem inicio em 200 °C e se estende a uma temperatura mais ampla
até 650 °C. A decomposi¢ao da hemicelulose, celulose e lignina ocorre simultaneamente em

baixas temperaturas como relatado na literatura [-19,

A primeira e a segunda etapa sdo relacionadas a despolimerizagao da hemicelulose e da
celulose através da degradagdo de materiais volateis, bem como ao inicio da degradacdo da
lignina. Na ultima, houve degradagdo da maior fragdo da lignina e de outras estruturas pesadas

como os aromaticos 72!,

Observa-se também que h4 estabilidade térmica da biomassa a partir de 650 °C, levando
a formacdo de 25,20% de carbono e inorgéanicos (Figura 10-a). O teor de residuos (6xidos

inorganicos) foi de 1,73% (Figura 10-b).

Os biochars produzidos em diferentes temperaturas (BC-300, BC-400, BC-500, BC-
600, BC-700 e BC-800), mostram perfis de curvas TG e DTG diferentes (Figura 11-a e Figura
11-b) quando comparadas com as curvas do EDP.
Figura 11 — Sobreposicdo das curvas TG do endocarpo da Macatba (EDP) e dos biochars produzidos ¢

curva DTG do EDP a) razdo de aquecimento = 10 °C.min"', fluxo de N> = 100 mL.min". b) razdo de
aquecimento = 10 °C.min"!, fluxo de ar sintético (60% ar atm e 40% de N,) = 100 mL.min™".
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Fonte: Elaborado pelo autor.
Os dados da Figura 11-a mostram a perda significativa de biomassa nos biochars
produzidos em 400 °C e acima. O grafico da Figura 10-b confirma essa observacao, ja que

mostra estabilidade na massa do EDP a partir de 500 °C (andlise em atmosfera oxidante).
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As curvas de TG em atmosfera oxidante para os biochars também apresentam perfis
distintos do EDP nas mesmas condi¢des de analise (Figura 11-b). Também observamos que a

temperatura em que a curva estabiliza varia pouco entre os biochars e destes com o EDP.
5.2.2 Morfologia (Microscopia Eletronica de Varredura - MEYV)

As micrografias do EDP e dos biochars produzidos foram coletadas nas faixas de

magnificacdo 2.500x e 5.000x e sdo mostradas na Figura 12.

Figura 12 — Micrografias com mag
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onte: Elaborad pelo autor.

As micrografias representam um ponto amostral e fornecem a distribui¢des e arranjo
dos poros presentes na superficie do biochar 7], em carater qualitativo; e observa-se uma

morfologia heterogénea e presenga de cavidades porosas em todos materiais.
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A formagdo e expansdo desses poros e cavidades formados podem ser atribuidos a
emissdo de produtos quimicos volateis e vapor de agua para a superficie do material durante a

carbonizacdo [¢%7274],

Destacam-se os biochars BC-700 e BC-800 por uma maior porosidade que
possivelmente pode estar associada a degradagdo parcial da lignina e ruptura de suas cadeias

poliméricas (611,

5.2.3 Grupos Funcionais (Espectroscopia no Infravermelho por Transformada de

Fourier - FT-IR)

A Figura 13 apresenta uma sequéncia de espectros de FT-IR obtidos para o endocarpo
e seus derivados carbonizados as diferentes temperaturas de 300 °C a 800 °C. Essa sequéncia
de espectros mostra as transformacgdes na estrutura quimica e consequentes modificagcdes nos
grupos funcionais dos produtos carbonizados que se acentuam com o aumento da temperatura

de carbonizagio.

Figura 13 — Sequéncia de espectros de FT-IR dos biochars obtidos na carbonizagdo do endocarpo da
Macatba, comparativamente ao seu material precursor.
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Fonte: Elaborado pelo autor.

Na Figura 13 foram destacadas (em cinza) os intervalos das bandas relevantes e que se

1

pode observar essas modificagdes como no intervalo proximo a 3500 cm™ referentes a

estiramentos de OH. Como essa banda praticamente desaparece nas amostras carbonizadas,
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pode indicar perda de dgua ou CO», devido a degradacdo de grupos carboxilas presentes no

endocarpo ou deformagio axial da hidroxila presente na celulose "),

Na regido proximo a 3000 cm observa-se o mesmo comportamento nas bandas
relativas a estiramento C-H, o que podem ser caracteristicas de cadeias alifaticas da
hemicelulose. Os picos que aparecem na regido proximos a 1250~950 cm™ também
apresentaram modificagdes importantes tanto na forma como na intensidade indicando
modificagdes de grupos como éteres e fendis. Outras bandas com sinais mais discretos podem

estar associadas a degradagdo da lignina.

Estes resultados sdao corroborados com o esperado e relatados na literatura, uma vez que
no processo de conversao termoquimica, dado o aumento da temperatura ha maior perda de
grupos funcionais da superficie pela degradacio da estrutura lignocelulésica "? e consequente

diminuicdo da acidez e polaridade da superficie 41,

5.2.4 Analise Estrutural (Difratometria de Raios X - DRX)

A andlise por difragdo de raios X foi conduzida para avaliar as mudangas estruturais
decorrentes do processo de carbonizacdo do endocarpo da Macauba. Na Figura 14 sdo

representados, em sequéncia, os difratogramas do endocarpo (EDP) e dos biochars.

Figura 14 — Sequéncia de difratogramas do EDP e dos biochars obtidos na carbonizagdo do endocarpo
da Macauba.
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No difratograma do EDP, nota-se um padrdo caracteristico de materiais com a estrutura
tipica de biomassa lignocelulodsica, caracterizados por um halo amorfo intenso com valores
maximos entre 20° e 23° e valores minimos entre 13° ¢ 17° indicam a presenga de celulose e

lignina, respectivamente [73],

Com o aumento da temperatura de carbonizagdo, iniciando em BC-300, vé-se a
diminui¢do progressiva da intensidade desses picos e o alargamento dos sinais, resultado da
degradacao térmica. Entre 300 °C e 500 °C, a perda de cristalinidade ¢ um pouco mais visivel,
evidenciando o colapso das regides ordenadas da celulose e o aumento da desordem estrutural
[13

1. Esse comportamento é esperado, visto que a carbonizagdo promove a volatilizagdo e o

rearranjo dos constituintes organicos, originando uma matriz carbonosa amorfa.

A partir de BC-600, torna-se perceptivel o surgimento de bandas mais definidas
proximas a 23 ~25° e 42° ~ 44°, relacionadas ao carbono grafitico '), O processo se intensifica
em BC-700 e se torna ainda mais evidente em BC-800, sinalizando maior grau de organizagao

estrutural e crescimento de dominios grafiticos.
5.3 Ensaios de Adsorc¢ao

Foram testados como adsorventes todos os biochars - produzidos em forno elétrico, tipo
mufla, sem purga e em condi¢des limitadas de oxigénio (atmosfera ndo inerte), sem pré-
tratamento, poOs-tratamento ou ativagdo - e também o EDP para fins comparativos, por ser o

material precursor.
5.3.1 Adsorvato Azul de Metileno (MB)

A curva analitica de calibragdo do MB (Figura 15) foi construida a partir de 9 padrdes
de diluigdo e, por meio de regressao linear obteve-se a equagcdo da mesma com um coeficiente

de determinacao (r2) de 0,99985.
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Figura 15 — Curva analitica do azul de metileno (MB).
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Fonte: Elaborado pelo autor.

Entdo, pela Lei de Lambert-Beer - que estabelece uma relagdo linear entre a absorbancia

e a concentragdo da solug¢do — tem-se a Equagdo (5.1):

0,00105 + ABSg65 ym
CrivaL = 013677

(5.1)

Sendo:

CrinaL = concentragdo final do adsorvato MB (mg.L™);

ABSé65 ym = absorbancia da amostra no comprimento de onda 665 nm;

Os resultados da adsor¢do do Azul de Metileno (MB) foram expressos em termos de
percentual de remoc¢ao e capacidade de adsorcao - calculados conforme as equagdes (4.2) e
(4.3), respectivamente - € apresentados na Tabela 4. Os parametros testados nos ensaios foram:
tipo de adsorvente (endocarpo e os seis biochars produzidos) e a concentragdo de adsorvente

adicionado a solugdo (0,25, 0,50, 0,75 ¢ 1,00 g.L™}).

Tabela 4 — Resultados dos ensaios de adsor¢do do Azul de Metileno (MB).

TIPO DE CONC REMOCAO (%) A(I:)%I(;;CIPADE DE SHAPIRO-
ADSORVENTE APPORVENTE . . CAO (mg.g™) WILK
(gL  MEDIA DESVIO PADRAO MEDIA DESVIO PADRAO p

0,25 39,70 0,43 21,06 0,23 0,578

EDP 0,50 65,87 0,92 15,23 0,21 0,074

0,75 78,73 0,34 13,88 0,06 0,114

1,00 86,19 0,97 11,54 0,13 0,253

0,25 25,73 1,91 13,65 1,01 0,151

BC300 0,50 44,82 3,05 10,36 0,70 0,236

0,75 54,00 0,67 9,52 0,12 0,836
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TIPO DE CONC REMOCAO (%) A%‘;f)‘;CIggDE DE SH‘Q,EEO'
ADSORVENTE APSORVENTE ___ . , O (TarE)
(z.L) __MEDIA_DESVIO PADRAO_MEDIA DESVIO PADRAO D
=100 05,76 0.5 WE 011 0172
0.25 26.25 429 13.93 207 0.256
0.50 51.66 0.63 11.28 0.14 0.646
L 0.75 60.08 0.47 10.59 0.08 0.664
1.00 73.19 1.68 9.16 021 0.863
0.25 20.65 0.59 10.92 031 0.578
0.50 28.01 238 7.41 0.63 0.110
BC500 0.75 32,04 0.09 5.68 0.02 o
1.00 42,93 170 5.37 021 0.296
0.25 42,68 0.72 22.42 0.38 0.846
0.50 78.24 0.09 17.08 0.02 0.601
L 0.75 85.63 2.70 15.28 0.48 0.445
1.00 96.74 0.45 12.10 0.06 0.678
0.25 66.88 1.59 35.13 0.83 0.847
0.50 97.90 0.82 2456 021 0.159
BC700 0.75 98.97 0.30 17.66 0.05 L
1.00 99,04 0.29 12.39 0.04 0287
0.25 63.73 1.30 33.48 0.68 0.698
0.50 92.14 0.96 24.44 0.26 0311
LA 0.75 98.93 0.11 17.66 0.02 0.329
1.00 98.94 0.27 1238 0.03 0.753

--*: quantidade de dados inferior a 3, ndo sendo possivel calculo por Shapiro-Wilk.
Fonte: Elaborado pelo autor.

De forma geral, todos se mostraram capazes de remover/adsorver o MB em meio
aquoso, onde a capacidade de adsor¢do minima foi de 5,37 mg.g”! (BC-500) e maxima de
35,13 mg.g™! (BC-700); a remogio minima foi de 20,65% (BC-500) e maxima de 99,04% (BC-
700).

BC-600, BC-700 e BC-800 atingiram niveis de remog¢do proximos aos 100%.
Entretanto, essa remog¢ao nao se traduz em maior rendimento por unidade de massa, justamente
porque parte da superficie do adsorvente pode permanecer sem uso efetivo, como € o caso da
comparacdo dos resultados do BC-700 com concentra¢des 0,50 g.L ! e 1,00 g.L!; neste, teve
remocoes altas 97,90% e 99,04%, porém capacidades de adsor¢@o sdo quase o dobro uma da
outra — 24,56 mg.g! e 12,39 mg.g’'; sendo mais eficiente — maior remogdo por massa de
adsorvente utilizada - e outro mais eficaz — maior remog¢ao sem considerar a quantidade de

massa utilizada.

Entdo, como representado na Figura 16, torna-se necessaria uma analise em paralelo
também da remocao (curva vermelha) ou da relagdo da capacidade de adsor¢do obtida (curva

cinza escura) sobre limite maximo da capacidade de adsor¢do (area cinza claro).



Figura 16 — Médias da remocao e da capacidade de adsor¢do do azul de metileno (MB), em fun¢do dos
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tipos e concentragdes dos diferentes adsorventes.
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Fonte: Elaborado pelo autor.

Observa-se que a capacidade de adsorcdo tende a diminuir com o aumento da
concentra¢do do adsorvente, independentemente do tipo de adsorvente. Esse decréscimo indica
que, em menores concentragdes de adsorvente, cada grama deste entra em contato com uma

quantidade relativamente maior de moléculas de MB, aproveitando de maneira mais eficiente

seus sitios de adsorc¢ao.

Com o aumento da concentrac¢do de adsorvente, ha maior disponibilidade de sitios para

promover a adsor¢do, mas a quantidade total de MB na solugdo torna-se insuficiente para

ocupar todos os sitios - levando a uma reducdo da capacidade de adsorgao.
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Por outro lado, diferentemente da capacidade de adsor¢do, a remogao aumentou com o
aumento da concentracdo do adsorvente; esse aumento ocorre porque, com maior massa de
adsorvente, ha mais sitios ativos disponiveis para capturar as moléculas de MB, e reduz sua

quantidade residual na solucao.

Dois adsorventes com destaque sdo o EDP e BC-500, onde o BC-500 atingiu os piores
niveis de capacidade de adsor¢do (5,37 mg.g!) e remogdo (20,65%), apresentando uma zona
de transi¢do estrutural com fechamento parcial dos poros devido a reorganizacdao do carbono;
o EDP apresentou desempenho intermediario — superando BC-300 e BC-400 — chegando a
atingir capacidade de adsor¢io em 11,54 mg.g”! e 86,19% de remogido — quando aplicada a
concentragio mais alta (1,00 g.L'"), sugerindo que a biomassa sem carbonizagdo possui grupos
funcionais capazes de interagir com MB — fatos evidente quando relacionado aos resultados dos

grupos funcionais (FT-IR) no item 5.2.3.

BC-700 atingiu maiores capacidades de adsor¢do assim como quase totalidade da
remocao quando utilizadas as concentragdes 0,50, 0,75 e 1,00, sugerindo que basta utilizar a
concentracdo de 0,50 g.L! para boa eficiéncia e eficicia de remogio do MB; caso da utilizacdo
do BC-800, entende-se que uma concentracio minima de 0,75 g.L"! deveria ser utilizada; BC-
600 com 1,00 g.L! e os demais adsorventes eventualmente maiores concentragdes do que as

utilizadas neste estudo.

A fim de verificar se foram significativas as diferencas entre os resultados, o teste de
normalidade foi aplicado pelo método de Shapiro-Wilk, com grau de significancia de 0,05, e
verificou-se se tratar de uma série de dados paramétricos, ou seja, distribuicdo normal uma vez
que resultado “p” de Shapiro-Wilk para todos os grupos foi acima de 0,05 (Tabela 4). Para este
tipo de distribuicdo de dados e quantidade de varidveis, a Analise de Variancia de 2 fatores
(ANOVA-2) foi utilizada (Tabela 5), sendo os dois fatores: diferentes tipos de materiais

adsorventes e as diferentes concentragoes de adsorvente na solucao.

Tabela 5 —~ANOVA-2 dos ensaios de adsor¢do do MB em fungdo dos fatores: tipo de adsorvente e
concentrac¢do de adsorvente.

GRAU DE
SOMADE QUADRADO
FATORES LIBE(I;:))ADE QUADRADOS MEDIO Fanova PANOVA-2
TIPO 6 225721 376,20 1116,57 <1E-4
CONC. 3 1472.,55 490,85 1456,85 <1E-4
TIPO X CONC. 18 580,35 32,24 95,69 <1E-4
RESIDUOS 54 18,19 0,34

Fonte: Elaborado pelo autor.
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Para os 2 (dois) fatores de forma individual e também da interacdo destes os valores de
“p” da ANOVA-2 foram abaixo de 0,05 - o que indica, com 95% de confianga, que houve
diferenca estatistica na capacidade de adsor¢ao do MB dentre os diferentes tipos de adsorvente
testados, dentre as diferentes concentragdes e também da interagdo de todas variaveis desses 2
fatores de forma integrada. Na Figura 17 ¢ apresentada a andlise do teste de Tukey para

diferencgas estatisticas da Capacidade de Adsor¢ao da interagdo de ambos os fatores.

Figura 17 — Teste comparativo de Tukey da influéncia da interacdo dos 2 fatores na capacidade de
adsorc¢do do Azul de Metileno (MB): Concentragao do Adsorvente e Tipo de Adsorvente.
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Limitemax q:: limite maximo da capacidade de adsor¢do (mg.g™!); R: remog¢io (%).
Fonte: Elaborado pelo autor.

No grafico a esquerda da Figura 17, vé-se as curvas das capacidades de adsor¢ao média
- linhas solidas coloridas - de cada um dos adsorventes, juntamente com uma area cinza que
representa o limite méaximo possivel da adsor¢do e a linha tracejada em dourado representando

o percentual de MB removido; todas estas variaveis em fun¢do da concentracdo de adsorvente.

Para todos os biochars, houve a tendéncia de reducdo da capacidade de adsor¢do com o
aumento da concentracdo do adsorvente de 0,25 g.L! até 1,00 g.L"! e o inverso para remogio;
entretanto, vé-se que o grau de inclinagdo ¢ mais acentuado nos BC-700 e BC-800, quando

comparado aos demais — ou seja, maiores foram as diferencas nas menores concentragdes.
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No grafico da direita, as linhas sélidas coloridas sdo da capacidade de adsor¢cao média
obtida para cada uma das concentragdes, para além da linha de remoc¢do média (dourada e
tracejada), todos em fungao do tipo de adsorvente. Vé-se que o comportamento das 4 (quatro)
curvas da capacidade de adsor¢ao e a curva de remocao sao semelhantes e demonstram a relagao
diretamente proporcional da temperatura de carbonizagdo na remocdo e na capacidade de

adsor¢ao.

Por mais que possuam alta capacidade de adsorg¢ao, isso nao se refletiu em boa remogao;
para os adsorventes BC-300, BC-400, BC-500 e EDP em concentragdes abaixo de 1,00 g.L! se
mostraram razoaveis em capacidade, mas piores em remogao. BC-600, BC-700 ¢ BC-800
concentragdes a partir de 0,75 g.L"! atingiram bons niveis de capacidade e altos niveis de

remocao.

Para todas as concentragdes, BC-700 ¢ BC-800 foram muito superiores aos demais
adsorventes; o tragado de suas curvas tem um comportamento muito semelhante ao variar a

concentragdo de adsorvente; ocorre o mesmo para BC-600 e EDP, BC-300 e BC-400.

Para obter uma remoc¢ao a altos niveis (acima de 96%) do MB (em concentracao
proxima a 15 mg.L") usando BC-700 basta usar uma concentragio deste adsorvente 0,50 g.L°
!, para BC-800 uma concentragio de 0,75 g.L"!, para o BC-600 a partir de 1,00 g.L"!. Para os
demais adsorventes, eventualmente maiores concentragdes do que as utilizadas neste estudo

devam ser testadas, sendo maiores que maiores que 1,00 g.L!.

Observa-se que para todas as concentragdes testadas, os biochars BC-700 e BC-800
possuem, estatisticamente, mesma capacidade de adsor¢do, entretanto vé-se que BC-700 teve
maior média de remocao (Figura 17-b), sugerindo que ambas possuem mesma eficiéncia, porém

leve superioridade de eficicia para BC-700 com 89,95% frente aos 88,44% do BC-800.

Para a maior capacidade de adsor¢do, do BC-700 com 35,13 mg.g!, o desempenho foi
superior comparada a capacidade de adsorventes produzidos com tecnologia semelhante —
atmosfera ndo inerte, sem pré ou pos tratamento e sem ativagao — e as mesmas condi¢des de
ensaio/equilibrio (25 °C e concentragio de equilibrio 4,35 mg.L!); biochars produzidos a partir
de residuos de biodigestor, casca de palmeira e casca de eucalipto apresentaram capacidades de

adsorgdo 2,66 mg.g”', 2,06 mg.g”' ¢ 0,98 mg.g™! 1],
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Outro adsorvente produzido com simplicidade operacional semelhante porém a partir
do tratamento hidrotérmico da torta residual da extracdo do 6leo da Macauba apresentou
capacidade de adsorcdo de 9,95 mg.g™! ['%: a remogdo maxima também foi superior, onde no
referido estudo obtiveram até 92% quando usada concentracdo de 5 g.L"! de adsorvente a
solugdo de MB com concentragio de 25 mg.L!; contudo os biochar BC-600, BC-700 e BC-800

foram melhores em condigdes de ensaios mais adversas.

Vé-se um desempenho significativo da capacidade de adsor¢do maxima obtida
(35,13 mg.g"! do BC-700) quando comparada - nas mesmas condi¢des de temperatura (25 °C)
e concentragio de equilibrio (4,35 mg.L") — as capacidades de adsor¢io de MB obtidas em
outros estudos nos quais a produ¢ao do adsorvente foi mais complexa ou mesmo mais custosa
pelo uso técnicas/equipamentos e reagentes para realizar a carbonizacdo sob atmosfera inerte,

pré-tratamento, pos-tratamento ou ativagao.

Como carvao produzido a partir da pir6lise a vacuo do pneu de borracha pré-tratada com
banho 4cido, com 13,62 mg.g!' ''®l biochar quimicamente ativado produzido em atmosfera
inerte a partir do pseudocaule da bananeira 93,98 mg.g'a [!'7); um biochar obtido a partir da
folha da Magnolia Grandiflora L., pré-tratada com ciclos de lavagem com agua e secagem,
apresentou capacidade de adsor¢do de 36,69 mg.g™! U!8l; com uso do biochar ativado e pos-
tratado com acido tanico, produzido a partir da biomassa da Phragmites australis, em atmosfera
inerte, a capacidade de adsor¢do foi de 35,15 mg.g! U biochar produzido a partir da
carbonizac¢do da casca de amendoim em atmosfera inerte e pds-tratado com dodecil sulfato de

sodio apresentou capacidade de adsorgdo entre 32,82 a 42,10 mg.g™! [12%),

5.3.2 Adsorvato Bisfenol A (BPA)

A curva analitica de calibragdo do BPA (Figura 18) foi construida a partir de 17 padrdes
de diluicdo e, por meio de regressdo linear obteve-se a equacdo da mesma com um coeficiente

de determinacao (r2) de 0,99992.
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Figura 18 — Curva analitica do Bisfenol A (BPA).
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Fonte: Elaborado pelo autor.

Pela Lei de Lambert-Beer - que estabelece uma relacao linear entre a absorbancia e a

concentragdo da solugdo — tem-se a Equagao (5.2):

ABSy26qm — 0,000738
0,06347

(5.2)

CrinaL =

Sendo:

CrinaL = concentragdo final do adsorvato BPA (mg.L™);

ABS2264m = absorbancia da amostra no comprimento de onda 226 nm;

Os resultados da adsor¢do do Bisfenol A (BPA) foram expressos em termos de remogao
e capacidade de adsor¢do - calculados conforme as equagdes (4.2) e (4.3), respectivamente - €
apresentados na Tabela 6. Os parametros testados nos ensaios foram: tipo de adsorvente
(endocarpo e os seis biochars produzidos) e a concentragdo de adsorvente adicionado a solugdo

(0,50, 0,75, 1,00, 2,50 ¢ 5,00 g.L!).

Tabela 6 — Resultados dos ensaios de adsor¢do do Bisfenol A (BPA).

1100 DE CONC —— ACAPACIPADE DE  SHAPIRO-

ADSORVENTE APSORVENTE _ _ADSORCAO (mg.g’)  WILK
(z.L") __MEDIA_DESVIO PADRAO_MEDIA DESVIO PADRAO -

0.50 14.08 0.24 4.33 0.07 0.122

0.75 17.39 0.59 3.01 0.26 0.067

EDP 1.00 19.49 0.33 2.87 0.05 0.662

2.50 36.41 0.30 224 0.02 0.999

5.00 54.47 0.43 1.62 0.01 0.158

0.50 14.44 1.09 4.44 0.33 0.719

BC300 0.75 21.46 0.77 3.71 033 0.340
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T CONC REMOCAO (%) CAPACIDADE Dlj]l SHAPIRO-
ADSORVENTE ADSORVENTE . _ . ADSORCAO (mg.g ) _ WILK
(gL) MEDIA DESVIO PADRAO MEDIA DESVIO PADRAO
= 1,00 23,39 0,25 3,42 0,04 0,789
2,50 45,05 0,95 2,77 0,06 0,876
5,00 68,50 0,28 2,03 0,01 0,903
0,50 15,81 0,47 4,86 0,14 0,180
0,75 23,56 0,39 3,80 0,06 0,067
BC400 1,00 25,89 0,47 3,79 0,07 0,137
2,50 49,13 0,71 2,89 0,04 0,102
5,00 70,15 0,92 2,08 0,03 0,345
0,50 8,03 0,49 2,47 0,15 0,670
0,75 11,42 0,43 1,84 0,07 0,664
BC500 1,00 11,58 0,97 1,70 0,14 _x
2,50 17,38 0,01 1,02 0,00 ok
5,00 30,97 1,13 0,92 0,03 0,975
0,50 40,16 0,68 12,02 0,20 0,184
0,75 62,26 0,60 10,03 0,10 0,297
BC600 1,00 66,44 1,70 9,73 0,25 1,000
2,50 92,68 0,76 5,45 0,04 0,172
5,00 90,15 0,28 2,67 0,01 0,150
0,50 77,38 2,87 23,17 0,86 0,098
0,75 95,70 0,15 15,42 0,02 0,273
BC700 1,00 96,31 1,80 14,10 0,26 0,469
2,50 99,66 0,44 5,86 0,03 0,187
5,00 99,40 0,15 2,95 0,00 0,074
0,50 69,15 3,24 20,71 0,97 0,510
0,75 89,60 0,72 14,44 0,12 _x
BC800 1,00 92,46 2,63 13,54 0,39 0,480
2,50 99,28 0,49 5,84 0,03 0,400
5,00 99,63 0,39 2,95 0,01 %

--*: quantidade de dados inferior a 3, ndo sendo possivel calculo por Shapiro-Wilk.
Fonte: Elaborado pelo autor.

Todos os adsorventes testados foram capazes de adsorver o BPA dissolvido na solugao
aquosa, com percentual de remocao variando de um minimo de 8,03% - do BC-500 - para
99,66%, do BC-700. As capacidades de adsor¢do minima e maxima foram de 0,92 mg.g! (BC-
500) e 23,17 mg.g!' (BC-700), respectivamente.

Houve um contraste grande tanto na capacidade de adsor¢do quanto remocao dos
biochars BC-600, BC-700 e BC-800 para os demais adsorventes; sendo que BC-700 e BC-800

atingiram niveis de remog¢ao proximos aos 100%.

Esse alto nivel de remocao expressa que houve alta eficdcia e ndo necessariamente alta
eficiéncia — com altas capacidades de adsor¢do; nota-se que a altas concentragdes (2,50 e
5,00 g.L'") apenas para os biochars BC-700 e BC-800 obtiveram préximo dos 100%, e suas

capacidades de adsorgdo foram baixas 5,86/5,84 e 2,95/2,95 mg.g"!, respectivamente.

Na Figura 19, estdo plotados os dados, onde fica mais clara essa avaliagdo do balango

da eficiéncia e eficacia; a partir da relagdo da capacidade de adsor¢do obtida (curva cinza
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escura) sobre limite maximo da capacidade de adsorcdo (area cinza claro) e em conjunto da

curva da remogao (vermelho).

Figura 19 — Médias da remocao e da capacidade de adsor¢do do Bisfenol A (BPA), em funcao dos tipos
e concentracdes dos diferentes adsorventes.
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Fonte: Elaborado pelo autor.

Assim como nos ensaios com MB, foi notado que, com o aumento da concentragao do
adsorvente, a capacidade de adsorc¢do tende a reduzir, independentemente do tipo de material;
1Sso ocorre porque, em menores concentragdes, cada grama de adsorvente interage com mais
moléculas de BPA, aproveitando melhor seus sitios de adsor¢do. Com o aumento da
concentracdo, a quantidade de BPA torna-se insuficiente para ocupar todos os sitios, levando a

subutilizacdo do material.
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Com relacdo a remocgdo, assim como apresentado nos ensaios de adsor¢ao de MB,
apresentou tendéncia oposta a capacidade de adsor¢do, elevando-se conforme cresce a
concentracdo do adsorvente, pois quao maior a concentracdo — maior quantidade de massa —
maior quantidade de sitios para adsorver as moléculas de BPA, fazendo com que ocorra a

diminui¢do da concentragao do BPA na solugao.

Destaque para o biochar BC-500, que atingiu os piores niveis de capacidade de adsor¢ao
(0,92 mg.g’!) e remogdo (8,03%) levando a crer que se trata de uma fase transitéria de
transformagdo do material, no qual a carbonizagcdo dos compostos apresentou algum tipo de

obstrucdo de seus poros.

Com excegao do BC-500, o comportamento dos diferentes adsorventes evidencia que o
processo de carbonizagao elevou o desempenho adsortivo e a remogao em relagdo ao material
precursor — EDP; sugerindo que maiores porosidades influenciaram mais do que a presenga de

grupos funcionais.

Entre os biochars, nota-se evolu¢do no desempenho com o aumento da temperatura de
carbonizagdo, destacando BC-700 e BC-800 que apresentaram boas capacidades de adsor¢ado e
remogdes — na ordem de 14 mg.g! e 90%, a partir de uma concentracdo de apenas 1,00 g.L'!;

enquanto os demais biochars ndo obtiveram este desempenho, nem mesmo com 5,00 g.L!.

Foi aplicado o método de Shapiro-Wilk, com grau de significancia de 0,05, para
verificacdo do tipo de distribuicao destes resultados, onde se confirmou se tratar de uma série
de dados paramétricos, ou seja, distribuigdo normal uma vez que resultado “p” de Shapiro-Wilk
para todos os grupos foi acima de 0,05 (Tabela 6). Para este tipo de distribuicdo de dados e
quantidade de varidveis, a Andlise de Variancia de 2 fatores (ANOVA-2) foi utilizada (Tabela
7), sendo os dois fatores: diferentes tipos de materiais adsorventes e as diferentes concentragdes

de adsorvente na solucao.

Tabela 7 — ANOVA-2 dos ensaios de adsor¢ao do BPA em fungdo dos fatores: tipo de adsorvente e
concentracgdo de adsorvente.

GRAU DE
SOMA DE QUADRADO
FATORES LIBE(I;:))ADE QUADRADOS MEDIO Fanova PANOVA-2
TIPO 6 1632,52 272,09 374444 <1E-4
CONC. 4 832,48 208,12 2864,14 <lE-4
TIPO X CONC 24 706,74 29,45 405,25 <1E-4
RESIDUOS 66 4,80 0,07

Fonte: Elaborado pelo autor.
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Os valores de “p” da ANOVA-2 foram abaixo de 0,05 - o que indica, com 95% de
confianga, que houve diferenca estatistica na capacidade de adsor¢cdo do BPA para os 2 (dois)
fatores de forma individual e também da interacao destes, ou seja, dentre os tipos de adsorvente
testados, dentre as diferentes concentracdes e também da interagdo de todas variaveis destes 2
fatores de forma integrada. Na Figura 20 s3o representados os resultados do teste de Tukey para

diferencgas estatisticas da Capacidade de Adsor¢ao da interagdo de ambos os fatores.

Figura 20 — Teste comparativo de Tukey da influéncia da interacdo dos 2 fatores na capacidade de
adsorgdo do Bisfenol A (BPA): Concentragdo do Adsorvente e Tipo de Adsorvente.
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Fonte: Elaborado pelo autor.

Plotados a esquerda, em fun¢do da concentracdo de adsorvente, estdo as curvas da
capacidade de adsor¢do - linhas so6lidas coloridas - de cada um dos adsorventes, juntamente
com uma area cinza que representa qual seria o limite maximo possivel da capacidade de

adsorc¢do e a linha tracejada em dourado representando o percentual de remocgao.

Hé4 um mesmo comportamento de redu¢do da capacidade de adsor¢do com o aumento
da concentragdo do adsorvente de 0,50 g.L! até 5,00 gL' e o inverso para remogdo. Para
maiores concentragdes maiores foram as diferengas de capacidade de adsorcdo entre os
adsorventes; o grau de inclinagdo ¢ mais acentuado nos BC-700 e BC-800, para o BC-600 mais

moderado e para os demais adsorventes (BC-500, BC-400, BC-300 e EDP) inclinagdes sutis.
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Por mais que, para menores concentragdes maiores capacidades de adsor¢do tenham
sido observadas (BC-700 com 23,17 mg.g’"), ndo foram suficientes para garantir uma boa
remocao (34,15%), visto que a curva de remog¢do média (tracejada dourada) ¢ ascendente e

varia destes 34,15% em 0,50 g.L"! para 72,00% na concentragdo 5,00 g.L".

Os adsorventes BC-300, BC-400, BC-500 ¢ EDP obtiveram um mau desempenho para
capacidade de adsor¢do e percentual de remocdo, seja para as mais baixas ou mais altas
concentragdes. BC-600 apresentou um desempenho mediano; os BC-700 e BC-800 se
destacaram dentre os demais onde concentragdes a partir de 1,00 g.L"! atingiram os niveis mais

altos de capacidade de adsor¢do e de remogao.

No grafico plotado a direita da Figura 20, tem-se em funcao do tipo de adsorvente as
linhas s6lidas coloridas representando a capacidade de adsor¢ao média obtida para cada uma
das concentracdes, para além da linha de remocdo média (dourada e tracejada). Vé-se que o
comportamento das 5 (cinco) curvas da capacidade de adsor¢do e a curva de remogdo sdao
semelhantes ¢ demonstram a relagdo diretamente proporcional da temperatura de carbonizagao

na remogao e na capacidade de adsorgao.

Para as concentragdes entre 2,50 g.L "' e 5,00 g.L!, as capacidades de adsor¢io foram
semelhantes, com pouca diferenga estatistica entre os adsorventes, porém o percentual de
remocao foi superior para os BC-600, BC-700 e BC-800. Maiores foram as diferencas de

desempenho quando menores foram as concentracdes e superioridade para BC-700 e BC-800.

Observa-se que para 4 (quatro) das 5 (cinco) concentragdes testadas, os biochars BC-
700 e BC-800 possuem, estatisticamente, mesma capacidade de adsor¢do, entretanto vé-se que
BC-700 teve maior média de remoc¢ao devido melhor desempenho na concentragdo 0,50 mg.L"
I. BC-700 foi superior a0 BC-800 em eficiéncia e também teve superioridade de eficicia para

93,69% frente aos 89,32% do BC-800.

Para remog¢io de BPA em concentragio proxima a 15 mg.L™!, verificou-se que com o
uso do adsorvente BC-700 precisa-se de uma concentra¢io de 1,00 g.L"! e para o BC-800 a
partir de 2,50 g.L"!. Para os demais adsorventes, eventualmente maiores concentragdes do que

as utilizadas neste estudo devam ser testadas, sendo maiores que 5,00 g.L.

Para a maior capacidade de adsor¢do, do BC-700 com 23,17 mg.g!, o desempenho foi

superior quando comparada a capacidade de adsorventes produzidos com tecnologia
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semelhante — atmosfera ndo inerte, sem pré ou pds tratamento e sem ativagdo — e as mesmas
condig¢des de ensaio/equilibrio (25 °C e concentragio de equilibrio 3,39 mg.L!); como no uso
de biochars produzidos a partir da biomassa do Bambt (Phyllostachys pubescens),
carbonizados a 400 °C, 700 °C e 1.000 °C e obteve-se, respectivamente, 0,57 mg.L!, 0,77 mg.L
'e33,51 mg L' [121],

Vé-se um desempenho equiparado da capacidade de adsor¢do maxima obtida
(23,17 mg.g"!' do BC-700) quando comparada - nas mesmas condi¢des de temperatura (25 °C)
e concentragio de equilibrio (3,39 mg.L!) — as capacidades de adsor¢cdo de BPA obtidas em
outros estudos nos quais a produgdo foi mais complexa ou mesmo mais custosa pelo uso
técnicas/equipamentos e reagentes para realizar a carboniza¢do sob atmosfera inerte, pré-
tratamento, pos-tratamento ou ativagdo; ensaios de adsor¢cao com biochar ativado comercial
obtido a partir do endocarpo do Babaci a capacidade de adsorcdo foi de 26,28 mg.g™! 1%2l; um
biochar produzido a partir do tratamento quimico da casca de arroz foi capaz de adsorver
2,09 mg.g™! 12]; usando como adsorventes carvdes ativados comerciais de diferentes matrizes
carbondceas, sendo um de origem betuminosa e outra vegetal, as capacidades de adsor¢ao foram

39,16 mg.g"! € 5,01 mg.g”!, respectivamente (124,

Exemplos de estudos com adsorventes, produzidos em atmosfera inerte e ativados, com
desempenho mais expressivos foram relatados, como o produzido a partir da borra do café, com
uma capacidade de adsor¢io do BPA de 63,72 mg.g-1 [!%]; ¢ o obtido a partir da fibra da

palmeira Chamaerops humilis, cuja capacidade de adsorcdo foi de 43,23 mg.g-1 1126],
5.4 Analise Textural (Analisador de Area Superficial e Porosidade — ASAP)

Os ensaios de adsor¢ao de Azul de Metileno (MB) e Bisfenol A (BPA) apontaram os
biochars BC-700 e¢ BC-800 como os melhores adsorventes testados. Assim, como
caracterizagdo complementar, foi analisada a textura destes materiais por meio da andlise de
adsorcao do gés nitrogénio (N2) para determinacao da area superficial especifica (BET), volume

do poro e estimativa do tamanho médio dos poros (Tabela 8).

Tabela 8 — Propriedades texturais dos biochars BC700 ¢ BC-800.

PROPRIEDADE BC-700 BC-800
Area superficial especifica BET (m2.g") 189,72 137,51
Volume acumulado de poros (cm>.g™") 0,109604 0,083815
Tamanho médio do poro (nm) * 3,81 4,09

*: calculado pelo método de analise de adsor¢do BJH (1,7 a 40nm).
Fonte: Elaborado pelo autor.
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Tanto BC-700 quanto BC-800 apresentaram tamanho médio de poros que os
caracterizam como mesoporosos, sendo o tamanho dos poros do BC-700 cerca de 7% menores.
Tanto em termos de volume total de poros quanto de a area superficial especifica BET, o BC-
700 foi superior, apresentando volume total de poros 30,8% maior que os 0,08815 cm>.g”! do
BC-800; a area superficial especifica BET foi 38% maior que os 137,51 m?.g"! do BC-800, o
que corrobora com a maior capacidade de adsor¢ao apresentada nos ensaios com os adsorvatos

MB e BPA.

Essa superioridade das propriedades de porosidade do BC-700 frente ao BC-800, ou
seja, de um biochar produzido a menor temperatura ja foi observada, em temperaturas
moderadas de carbonizagdo (600 a 800 °C) otimizaram a porosidade, enquanto mais altas
(900 °C) promoveram a grafitiza¢do, aumentando a condutividade elétrica e reduzindo a éarea

superficial [127],

Fato também relatado por outros autores, em que relatam que quando a temperatura de
carbonizagdo ultrapassa 700 °C, algumas estruturas microporosas na superficie do biochar
podem ser destruidas, e quando a temperatura ultrapassa 800 C, a estrutura carbonacea do

biochar pode tornar-se mais instavel 131,

Ainda que com produgdo em atmosfera inerte, porém a menores temperaturas, biochars
também produzidos a partir do EDP da Macauba, obtiveram volumes totais de poros inferiores
quando comparados ao do presente estudo, com 0,0457 cm?.g™! (500 °C) e 0,0891 cm’.g’!
(550 °C) 1?8); com relagdio a suas 4reas superficiais especificas BET, valores inferiores foram
observados quando produzidas a 350 °C e 500 °C, sendo 0,83 m%.g' " ¢ 108 m?.g!' 1128,

respectivamente.

Continuando a comparagao da mesma biomassa precursora, resultados superiores foram
obtidos quando produzidos a partir de 550 °C — sob atmosfera inerte - com area superficial
especifica BET de 216 m?.g!' 128! ¢ mais significativa foi essa superioridade com o biochar
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ativado, sendo 627 m2.g"! [°], 643 m?.g"! " e atingindo até 907 m2.g™' "1, Com outros materiais

precursores, também ativados, ha exemplos de valores na ordem de 794,84 m?.g”!, como a

obtida a partir talo do algodio 1%,

Na Figura 21 estdo dispostas as curvas da analise da porosidade do BC-700 e BC-800

na adsor¢ao do nitrogénio (N2) em fungao do tamanho dos poros.
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Figura 21 — Curvas de distribui¢ao e volume dos poros calculados pelo método de BJH - adsorcgao.
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Fonte: Elaborado pelo autor.

Dada a distribui¢ao do tamanho dos poros na faixa de 2~40 nm, caracterizam-se os
materiais como mesoporosos, justificando e validando assim o uso método BJH, que ¢ uma
técnica de adsor¢do de gas indicada para determinar a distribuicdo do tamanho dos poros -

principalmente de materiais mesoporosos.

Observa-se que houve pouca diferenca da influéncia da temperatura de carbonizag¢do na
porosidade dos biochars; nas curvas de volume de poros acumulados uma semelhanga no grau
inclinagao, assim como os picos nas curvas dos volumes diferenciais. As isotermas de adsor¢ao
e dessorcao de N> para ambos materiais estdo apresentadas na Figura 22.

Figura 22 — Isotermas de adsor¢@o e dessor¢do de N, dos BC-700 e BC-800.
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Fonte: Elaborado pelo autor.
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O BC-700 apresenta uma capacidade de adsor¢do significativamente maior, chegando a
82 cm’.g! e BC-800 com 70 cm®.g!. As isotermas obtidas sdo compativeis com a isoterma do
tipo IV da classificagdo da International Union of Pure and Applied Chemistry (IUPAC), na
qual o ponto de inflexdo corresponde a formacao da primeira camada adsorvida, indicando a
presenca de microporos associados a mesoporos 3%, A curva tipo IV costuma ser atribuida a

materiais mesoporosos com uma fracio significativa de microporos 3!,

Hé um aumento rapido na quantidade adsorvida e isso € caracteristico do preenchimento
de microporos e da formacao de uma monocamada — pressao relativa até 0,10. Ja na regido na
qual a pressao relativa vai de 0,10 a 0,80, o aumento na quantidade adsorvida ¢ mais gradual e
nesta regido, ocorre a formacao de multiplas camadas e o preenchimento de mesoporos. Acima
de 0,80 ha um aumento acentuado, indicando o preenchimento de macroporos € o inicio da

condensagao capilar nos poros maiores.

Observa-se que, para ambos adsorventes, as curvas de adsor¢do e dessor¢ao nao sao
coincidentes, e essa diferenga se dd entre os mecanismos de condensagdo e evaporacgao, o que
¢ chamado de histerese e a geometria dos poros define sua forma 3%, Quando a pressio relativa
¢ baixa, ocorre a formag¢do de uma monocamada de moléculas adsorvidas; ja a adsor¢do em
multicamada prevalece em pressoes relativas mais altas, de modo que a espessura do adsorvato

aumenta progressivamente até a pressio de condensacio ser alcangada (1321,

Ainda na classificagdo de IUPAC, as isotermas dos biochars BC-700 e BC-800 exibem
ciclos de histerese semelhantes ao tipo H4, caracteristicos de materiais carbondceos com micro

e mesoporosos 3%,
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6 CONCLUSAO

Numa produgdo em larga escala, entende-se que ¢ justificavel a producdo de biochars
em condig¢des limitadas de oxigénio (atmosfera nao inerte) usando procedimentos simplificados
como recipientes tampados, o que confere maior rendimento do produto desejado ao invés de

condigoes de atmosfera oxidante.

O melhor rendimento para produ¢@o de biochar a partir da carbonizagdo - em condigdes
limitadas de oxigénio - do EDP da Macauba foi obtido em cadinhos com tampa. Como

esperado, o rendimento de producao do biochar diminui com o aumento da temperatura.

Para as temperaturas 600 °C, 700 °C e 800 °C nao houve diferenca estatistica e ficaram
com rendimento gravimétrico proximo a 26%, que € cerca de 6 a 7% menor que o rendimento
de biochars produzidos da mesma biomassa e temperaturas semelhantes, porém sob atmosfera
inerte; entende-se que a simplicidade tecnoldgica e operacional empregada neste presente

trabalho compense essa pequena diferenca.

Os demais resultados das andlises de caracterizagdo demonstraram que o EDP da
Macatiba ¢ um bom material precursor a producdo de biochar com boas caracteristicas

esperadas para um material adsorvente.

Ficaram evidentes as diferengas estruturais entre o endocarpo da Macauba (EDP) e os
biochars produzidos, onde houve transformacdes na cristalinidade, no ordenamento estrutural
do material ao longo do processo térmico com a degradagdao da hemicelulose, celulose, lignina
houve perda de grupos funcionais; essa degradagdo refletiu o avango do processo de

carbonizacdo ¢ o aumento da estabilidade térmica do material.

Os ensaios de adsor¢do com solucdes aquosas contendo Bisfenol A (BPA) e Azul de
Metileno (MB) demonstraram que todos os materiais carbonaceos produzidos foram capazes

de remover estes tipos de moléculas, em todas as concentragdes de adsorventes testadas.

Embora os resultados dos ensaios de adsor¢@o tenham sido bons para adsor¢do de ambos
contaminantes — MB de carater polar e BPA de carater apolar — a0 comparar mesmas
concentragdes de adsorvente testadas, nota-se que os biochars produzidos apresentaram maior
afinidade na adsor¢ao pelo MB; levando a crer que possam também ser bons adsorventes para

outras substancias polares.
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Observou-se que, tanto para adsor¢do do MB quanto para a do BPA, a temperatura de
carbonizagdo de produ¢do do biochar influenciou fortemente no percentual de remocgao e na
capacidade de adsor¢do, onde os produtos obtidos as temperaturas mais elevadas apresentaram

melhores resultados.

Os biochars produzidos a 700 °C e 800 °C se destacaram como melhores adsorventes
dentre os demais produzidos (BC-300, BC-400, BC-500 ¢ BC-600), sendo que, num computo
geral, BC-700 sobressaiu ao BC-800 por ter apresentado melhores propriedades texturais,
menor demanda energética em sua producdo e resultados de adsor¢do de MB e BPA

ligeiramente melhores.

O desempenho (ge M € ge BPA) do BC-700 foi superior aos de outros adsorventes
produzidos com tecnologia semelhante — atmosfera nao inerte, sem pré ou pos tratamento e sem

ativacao.

O desempenho (ge MB € ge BPA) do BC-700 foi equiparado ou mesmo mediano ao de
outros adsorventes produzidos de forma mais complexa ou mesmo mais custosa — o que acaba

por ser 6timo dada a diferenca tecnoldgica.

Assim sendo, trabalhos futuros envolvendo testes com outras moléculas de

contaminantes emergentes também justificam serem conduzidos.
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