Use este identificador para citar ou linkar para este item:
http://repositorio.ufgd.edu.br/jspui/handle/prefix/4806
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.advisor1 | Amorim, Willian Paraguassu | - |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/8746409982228678 | pt_BR |
dc.contributor.referee1 | Zampieri, Carlos Elias Arminio | - |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/8830407239695417 | pt_BR |
dc.contributor.referee2 | Furlan, Marcos Mansano | - |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/6488098979363222 | pt_BR |
dc.creator | Leandro, Jhonatan Correa | - |
dc.date.accessioned | 2022-03-11T21:24:40Z | - |
dc.date.available | 2022-03-11T21:24:40Z | - |
dc.date.issued | 2021-11-12 | - |
dc.identifier.citation | LEANDRO, Jhonatan Correa. Aplicação de redes neurais LSTM para previsão de séries temporais financeiras. 2021. Trabalho de Conclusão de Curso (Bacharelado em Engenharia de Computação) – Faculdade de Ciências Exatas e Tecnologias, Universidade Federal da Grande Dourados, Dourados, MS, 2021. | pt_BR |
dc.identifier.uri | http://repositorio.ufgd.edu.br/jspui/handle/prefix/4806 | - |
dc.description.abstract | Making forecasts in the financial market can bring huge gains for institutions, governments, in vestors, among others. However, it is not a trivial task, due to the chaotic and unpredictable nature of the financial market. Several approaches have already been studied in order to achieve satisfactory results, such as machine learning and neural networks Long Short-Term Memory networks (LSTM) due to their effectiveness working with time series. In this work, our proposal is to use an LSTM neural network and from the closing price using renko chart, and perform the bullish or bearish forecast for the next market movement. Results show that our proposal presents satisfactory results compared to the traditional Buy and Hold technique. | en |
dc.description.resumo | Realizar previsões no mercado financeiro pode trazer um imenso ganho para instituições, governos, investidores, entre outros. Entretanto não é uma tarefa trivial, devido à natureza caótica e imprevisível do mercado financeiro. Várias abordagens já foram estudadas com o propósito de alcançar resultados satisfatórios, como por exemplo, aprendizado de máquina e redes neurais Long Short-Term Memory networks (LSTM) devido a efetividade das mesmas trabalhando com séries temporais. Nesse trabalho, nossa proposta está em usar uma rede neural LSTM e a partir do preço de fechamento usando gráfico renko, e realizar a previsão de alta ou baixa para o próximo movimento do mercado. Resultados mostram que nossa proposta apresenta resultados satisfatórios comparado a técnica tradicional Buy and Hold. | pt_BR |
dc.description.provenance | Submitted by Marcos Pimentel (marcospimentel@ufgd.edu.br) on 2022-03-11T21:24:40Z No. of bitstreams: 1 JhonatanCorreaLeandro.pdf: 1899505 bytes, checksum: a2279da9e06dbeaa53cd9eb731fd7fa6 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2022-03-11T21:24:40Z (GMT). No. of bitstreams: 1 JhonatanCorreaLeandro.pdf: 1899505 bytes, checksum: a2279da9e06dbeaa53cd9eb731fd7fa6 (MD5) Previous issue date: 2021-11-12 | en |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal da Grande Dourados | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Faculdade de Ciências Exatas e Tecnologia | pt_BR |
dc.publisher.initials | UFGD | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Aprendizagem profunda | pt_BR |
dc.subject | Deep learning | en |
dc.subject | Rede neural (ciência da computação) | pt_BR |
dc.subject | Neural computers | en |
dc.subject | Mercado financeiro | pt_BR |
dc.subject | Financial market | en |
dc.subject.cnpq | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO::COMPUTABILIDADE E MODELOS DE COMPUTACAO | pt_BR |
dc.title | Aplicação de redes neurais LSTM para previsão de séries temporais financeiras | pt_BR |
dc.type | Trabalho de Conclusão de Curso | pt_BR |
Aparece nas coleções: | Engenharia de Computação |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
JhonatanCorreaLeandro.pdf | 1,85 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.